Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuroimage ; 293: 120611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643890

ABSTRACT

Dynamic PET allows quantification of physiological parameters through tracer kinetic modeling. For dynamic imaging of brain or head and neck cancer on conventional PET scanners with a short axial field of view, the image-derived input function (ID-IF) from intracranial blood vessels such as the carotid artery (CA) suffers from severe partial volume effects. Alternatively, optimization-derived input function (OD-IF) by the simultaneous estimation (SIME) method does not rely on an ID-IF but derives the input function directly from the data. However, the optimization problem is often highly ill-posed. We proposed a new method that combines the ideas of OD-IF and ID-IF together through a kernel framework. While evaluation of such a method is challenging in human subjects, we used the uEXPLORER total-body PET system that covers major blood pools to provide a reference for validation. METHODS: The conventional SIME approach estimates an input function using a joint estimation together with kinetic parameters by fitting time activity curves from multiple regions of interests (ROIs). The input function is commonly parameterized with a highly nonlinear model which is difficult to estimate. The proposed kernel SIME method exploits the CA ID-IF as a priori information via a kernel representation to stabilize the SIME approach. The unknown parameters are linear and thus easier to estimate. The proposed method was evaluated using 18F-fluorodeoxyglucose studies with both computer simulations and 20 human-subject scans acquired on the uEXPLORER scanner. The effect of the number of ROIs on kernel SIME was also explored. RESULTS: The estimated OD-IF by kernel SIME showed a good match with the reference input function and provided more accurate estimation of kinetic parameters for both simulation and human-subject data. The kernel SIME led to the highest correlation coefficient (R = 0.97) and the lowest mean absolute error (MAE = 10.5 %) compared to using the CA ID-IF (R = 0.86, MAE = 108.2 %) and conventional SIME (R = 0.57, MAE = 78.7 %) in the human-subject evaluation. Adding more ROIs improved the overall performance of the kernel SIME method. CONCLUSION: The proposed kernel SIME method shows promise to provide an accurate estimation of the blood input function and kinetic parameters for brain PET parametric imaging.


Subject(s)
Brain , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Positron-Emission Tomography/standards , Brain/diagnostic imaging , Whole Body Imaging/methods , Image Processing, Computer-Assisted/methods , Algorithms
2.
BMC Med Imaging ; 23(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627570

ABSTRACT

BACKGROUND: Total-body positron emission tomography/computed tomography (PET/CT) scanners are characterized by higher signal collection efficiency and greater spatial resolution compared to conventional scanners, allowing for delayed imaging and improved image quality. These advantages may also lead to better detection of physiological processes that diagnostic imaging professionals should be aware of. The gallbladder (GB) is not usually visualized as an 18F-2-fluorodeoxyglucose (18F-FDG)-avid structure in routine clinical PET/CT studies; however, with the total-body PET/CT, we have been increasingly visualizing GB activity without it being involved in an inflammatory or neoplastic process. The aim of this study was to report visualization rates and characteristics of GB 18F-FDG uptake observed in both healthy and oncological subjects scanned on a total-body PET/CT system. MATERIALS AND METHODS: Scans from 73 participants (48 healthy and 25 with newly diagnosed lymphoma) who underwent 18F-FDG total-body PET/CT were retrospectively reviewed. Subjects were scanned at multiple timepoints up to 3 h post-injection. Gallbladder 18F-FDG activity was graded using liver uptake as a reference, and the pattern was qualified as present in the wall, lumen, or both. Participants' characteristics, such as age, sex, body-mass index, blood glucose, and other clinical parameters, were collected to assess for any significant correlation with GB 18F-FDG uptake. RESULTS: All 73 subjects showed GB uptake at one or more imaging timepoints. An increase in uptake intensity overtime was observed up until the 180-min scan, and the visualization rate of GB 18F-FDG uptake was 100% in the 120- and 180-min post-injection scans. GB wall uptake was detected in a significant number of patients (44/73, 60%), especially at early timepoint scans, whereas luminal activity was detected in 71/73 (97%) subjects, especially at later timepoint scans. No significant correlation was found between GB uptake intensity/pattern and subjects' characteristics. CONCLUSION: The consistent observation of GB 18F-FDG uptake recorded in this study in healthy participants and subjects with a new oncological diagnosis indicates that this is a normal physiologic finding rather than representing an exception.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Gallbladder/diagnostic imaging , Radiopharmaceuticals , Retrospective Studies , Tomography, X-Ray Computed/methods , Positron-Emission Tomography/methods
3.
Proc Natl Acad Sci U S A ; 117(5): 2265-2267, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964808

ABSTRACT

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


Subject(s)
Molecular Imaging/instrumentation , Positron Emission Tomography Computed Tomography/instrumentation , Whole Body Imaging/instrumentation , Fluorodeoxyglucose F18/administration & dosage , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Image Processing, Computer-Assisted , Motion , Radioactive Tracers
4.
Clin Gastroenterol Hepatol ; 19(11): 2441-2443, 2021 11.
Article in English | MEDLINE | ID: mdl-33075553

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease characterized by lobular inflammation and hepatocyte injury and is a key determinant of clinical outcome.1 Liver biopsy remains the gold standard for diagnosis but is limited by risks of the procedure and interobserver variability. Although magnetic resonance imaging (MRI)-based technology may provide novel means to identify NASH,2 there remains a significant need for other modalities to diagnose NASH noninvasively. Glucose transport, an integral tissue process altered in NASH,3 is measurable with 18F-fluorodeoxyglucose positron emission tomography (FDG PET). Because unenhanced computed tomography (CT) scan can detect hepatic steatosis quite reliably,4 and PET combines unenhanced CT for attenuation correction, we hypothesized that measurement of the combination of glucose transport by PET and steatosis by CT could yield a reliable radiologic correlate of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Tomography, X-Ray Computed
5.
Skeletal Radiol ; 49(6): 1005-1014, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31965239

ABSTRACT

OBJECTIVES: The objectives of the study are (1) to distinguish lipoma (L) from atypical lipomatous tumor (ALT) using MRI qualitative features, (2) to assess the value of contrast enhancement, and (3) to evaluate the reproducibility and confidence level of radiological readings. MATERIALS AND METHODS: Patients with pathologically proven L or ALT, who underwent MRI within 3 months from surgical excision were included in this retrospective multicenter international study. Two radiologists independently reviewed MRI centrally. Impressions were recorded as L or ALT. A third radiologist was consulted for discordant readings. The two radiologists re-read all non-contrast sequences; impression was recorded; then post-contrast images were reviewed and any changes were recorded. RESULTS: A total of 246 patients (135 females; median age, 59 years) were included. ALT was histopathologically confirmed in 70/246 patients. In multivariable analysis, in addition to the lesion size, deep location, proximal lower limb lesions, demonstrating incomplete fat suppression, or increased architectural complexity were the independent predictive features of ALT; but not the contrast enhancement. Post-contrast MRI changed the impression in a total of 5 studies (3 for R1 and 4 for R2; 2 studies are common); all of them were incorrectly changed from Ls to ALTs. Overall, inter-reader kappa agreement was 0.42 (95% CI 0.39-0.56). Discordance between the two readers was statistically significant for both pathologically proven L (p < 0.001) and ALT (p = 0.003). CONCLUSION: Most qualitative MR imaging features can help distinguish ALTs from BLs. However, contrast enhancement may be limited and occasionally misleading. Substantial discordance on MRI readings exists between radiologists with a relatively high false positive and negative rates.


Subject(s)
Lipoma/diagnostic imaging , Liposarcoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Contrast Media , Female , Humans , Lipoma/pathology , Liposarcoma/pathology , Male , Middle Aged , Reproducibility of Results , Retrospective Studies
6.
AJR Am J Roentgenol ; 212(3): 529-537, 2019 03.
Article in English | MEDLINE | ID: mdl-30673340

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are major causes of chronic liver disease characterized by steatosis, inflammation, and fibrosis. Diagnosis of inflammation is limited by the need for liver biopsy. Dynamic PET with the widely used radiotracer 18F-FDG provides a novel method for evaluating spatial and temporal changes in liver inflammation. MATERIALS AND METHODS: Patients with NAFLD or NASH underwent dynamic FDG PET and MRI within 6 months of undergoing liver biopsy. Liver time-activity curves were extracted to estimate kinetic parameters representing various rate constants of FDG transport using tracer kinetic modeling. Liver biopsy specimens were scored on the basis of NASH Clinical Research Network criteria. RESULTS: This pilot study included 22 patients, 14 of whom were women. Patient age ranged from 18 to 70 years, and the mean body mass index (weight in kilograms divided by the square of height in meters) was 33.2 (range, 24-43.1). The K1 value, which represents the rate of FDG transport from blood to hepatic tissue, was significantly correlated with inflammation (r = -0.7284; p = 0.0001) and the overall NAFLD activity score (NAS; r = -0.6750; p = 0.0006). K1 values were inversely related to the hepatic inflammation score and NAS. Although heterogeneity in K1 values across eight liver segments was noted, distinct segregation existed among segmental K1 values dependent on the histologic inflammation score (p = 0.022) or NAS (p = 0.0091). K1 had a strong association with both inflammation (ROC AUC value, 0.88) and the NAS (ROC AUC value, 0.89), with K1 = 1.02 (mL/min/mL) corresponding to a sensitivity and specificity of 93% and 88%, respectively, for the NAS. CONCLUSION: Dynamic FDG PET with tracer kinetic modeling has the potential to determine liver inflammation in patients with NAFLD and NASH and can fill an essential gap in diagnosis.


Subject(s)
Non-alcoholic Fatty Liver Disease/diagnostic imaging , Positron-Emission Tomography , Adolescent , Adult , Aged , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Pilot Projects , Radiopharmaceuticals
7.
Eur Radiol ; 28(12): 5069-5075, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29869174

ABSTRACT

PURPOSE: CT perfusion (CTP) imaging assessment of treatment response in advanced lung cancer can be compromised by respiratory motion. Our purpose was to determine whether an original motion correction method could improve the reproducibility of such measurements. MATERIALS AND METHODS: The institutional review board approved this prospective study. Twenty-one adult patients with non-resectable non-small-cell lung cancer provided written informed consent to undergo CTP imaging. A motion correction method that consisted of manually outlining the tumor margins and then applying a rigid manual landmark registration algorithm followed by the non-rigid diffeomorphic demons algorithm was applied. The non-motion-corrected and motion-corrected images were analyzed with dual blood supply perfusion analysis software. Two observers performed the analysis twice, and the intra- and inter-observer variability of each method was assessed with Bland-Altman statistics. RESULTS: The 95% limits of agreement of intra-observer reproducibility for observer 1 improved from -84.4%, 65.3% before motion correction to -33.8%, 30.3% after motion correction (r = 0.86 and 0.97, before and after motion correction, p < 0.0001 for both) and for observer 2 from -151%, 96% to -49 %, 36 % (r = 0.87 and 0.95, p < 0.0001 for both). The 95% limits of agreement of inter-observer reproducibility improved from -168%, 154% to -17%, 25%. CONCLUSION: The use of a motion correction method significantly improves the reproducibility of CTP estimates of tumor blood flow in lung cancer. KEY POINTS: • Tumor blood flow estimates in advanced lung cancer show significant variability. • Motion correction improves the reproducibility of CT blood flow estimates in advanced lung cancer. • Reproducibility of blood flow measurements is critical to characterize lung tumor biology and the success of treatment in lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Neovascularization, Pathologic/diagnostic imaging , Adult , Aged , Algorithms , Carcinoma, Non-Small-Cell Lung/blood supply , Carcinoma, Non-Small-Cell Lung/physiopathology , Female , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/physiopathology , Male , Middle Aged , Motion , Neovascularization, Pathologic/physiopathology , Observer Variation , Perfusion Imaging/methods , Prospective Studies , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Respiration , Software , Tomography, X-Ray Computed/methods
9.
IEEE Trans Med Imaging ; 43(3): 1125-1137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948143

ABSTRACT

Quantitative PET attenuation correction (AC) for cardiac PET/CT and PET/MR is a challenging problem. We propose and evaluate an AC approach that uses coincidences from a relatively weak and physically fixed sparse external source, in combination with that from the patient, to reconstruct µ -maps based on physics principles alone. The low 30 cm3 volume of the source makes it easy to fill and place, and the method does not use prior image data or attenuation map assumptions. Our supplemental transmission aided maximum likelihood reconstruction of attenuation and activity (sTX-MLAA) algorithm contains an attenuation map update that maximizes the likelihood of terms representing coincidences originating from tracer in the patient and a weighted expression of counts segmented from the external source alone. Both external source and patient scatter and randoms are fully corrected. We evaluated performance of sTX-MLAA compared to reference standard CT-based AC with FDG PET/CT phantom studies; including modeling a patient with myocardial inflammation. Through an ROI analysis we measured ≤ 5 % bias in activity concentrations for PET images generated with sTX-MLAA and a TX source strength ≥ 12.7 MBq, relative to CT-AC. PET background variability (from noise and sparse sampling) was substantially reduced with sTX-MLAA compared to using counts segmented from the transmission source alone for AC. Results suggest that sTX-MLAA will enable quantitative PET during cardiac PET/CT and PET/MR of human patients.


Subject(s)
Multimodal Imaging , Positron Emission Tomography Computed Tomography , Humans , Multimodal Imaging/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Algorithms , Image Processing, Computer-Assisted/methods
10.
Biomed Phys Eng Express ; 10(4)2024 06 25.
Article in English | MEDLINE | ID: mdl-38876087

ABSTRACT

Objective.This study investigates the potential of cloud-based serverless computing to accelerate Monte Carlo (MC) simulations for nuclear medicine imaging tasks. MC simulations can pose a high computational burden-even when executed on modern multi-core computing servers. Cloud computing allows simulation tasks to be highly parallelized and considerably accelerated.Approach.We investigate the computational performance of a cloud-based serverless MC simulation of radioactive decays for positron emission tomography imaging using Amazon Web Service (AWS) Lambda serverless computing platform for the first time in scientific literature. We provide a comparison of the computational performance of AWS to a modern on-premises multi-thread reconstruction server by measuring the execution times of the processes using between105and2·1010simulated decays. We deployed two popular MC simulation frameworks-SimSET and GATE-within the AWS computing environment. Containerized application images were used as a basis for an AWS Lambda function, and local (non-cloud) scripts were used to orchestrate the deployment of simulations. The task was broken down into smaller parallel runs, and launched on concurrently running AWS Lambda instances, and the results were postprocessed and downloaded via the Simple Storage Service.Main results.Our implementation of cloud-based MC simulations with SimSET outperforms local server-based computations by more than an order of magnitude. However, the GATE implementation creates more and larger output file sizes and reveals that the internet connection speed can become the primary bottleneck for data transfers. Simulating 109decays using SimSET is possible within 5 min and accrues computation costs of about $10 on AWS, whereas GATE would have to run in batches for more than 100 min at considerably higher costs.Significance.Adopting cloud-based serverless computing architecture in medical imaging research facilities can considerably improve processing times and overall workflow efficiency, with future research exploring additional enhancements through optimized configurations and computational methods.


Subject(s)
Cloud Computing , Computer Simulation , Monte Carlo Method , Nuclear Medicine , Software , Nuclear Medicine/methods , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Internet , Algorithms
11.
ArXiv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39108297

ABSTRACT

Standard Patlak plot is widely used to describe FDG kinetics for dynamic PET imaging. Whole-body Patlak parametric imaging remains constrained due to the need for a full-time input function. Here, we demonstrate the Relative Patlak (RP) plot, which eliminates the need for the early-time input function, for total-body parametric imaging and its application to clinical 20-min scan acquired in list-mode. We demonstrated that the RP intercept b' is equivalent to a ratio of standardized uptake value relative to the blood, while the RP slope Ki' is equal to the standard Patlak Ki multiplied by a global scaling factor for each subject. One challenge in applying RP to a short scan duration (20 min) is the high noise in parametric images. We applied a deep kernel method for noise reduction. Using the standard Patlak plot as the reference, the RP method was evaluated for lesion quantification, lesion-to-background contrast, and myocardial visualization in total-body parametric imaging with uEXPLORER in 22 human subjects who underwent a 1-h dynamic 18F-FDG scan. The RP method was also applied to the dynamic data regenerated from a clinical standard 20-min scan either at 1-h or 2-h post-injection for two cancer patients. We demonstrated that it is feasible to obtain high-quality parametric images from 20-min dynamic scans using the RP plot with a self-supervised deep-kernel noise reduction strategy. The RP Ki' highly correlated with Ki in lesions and major organs, demonstrating its quantitative potential across subjects. Compared to conventional SUVs, the Ki' images significantly improved lesion contrast and enabled visualization of the myocardium for potential cardiac assessment. The application of RP parametric imaging to two clinical scans also showed similar benefits. Total-body PET with the RP plot is feasible to generate parametric images from the dynamic data of a 20-min clinical scan.

12.
Article in English | MEDLINE | ID: mdl-38500666

ABSTRACT

Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy γ-ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging. We have developed a kernel-based maximum-likelihood attenuation and activity (MLAA) method that uses x-ray CT images as a priori information for noise suppression. However, our previous studies focused on GCT image reconstruction at the PET image resolution which is coarser than the image resolution of the x-ray CT. In this work, we explored the feasibility of generating super-resolution GCT images at the corresponding CT resolution. The study was conducted using both phantom and patient scans acquired with the uEXPLORER total-body PET/CT system. GCT images at the PET resolution with a pixel size of 4.0 mm × 4.0 mm and at the CT resolution with a pixel size of 1.2 mm × 1.2 mm were reconstructed using both the standard MLAA and kernel MLAA methods. The results indicated that the GCT images at the CT resolution had sharper edges and revealed more structural details compared to the images reconstructed at the PET resolution. Furthermore, images from the kernel MLAA method showed substantially improved image quality compared to those obtained with the standard MLAA method.

13.
Phys Med Biol ; 69(18)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39168154

ABSTRACT

Objective.Penalty parameters in penalized likelihood positron emission tomography (PET) reconstruction are typically determined empirically. The cross-validation log-likelihood (CVLL) method has been introduced to optimize these parameters by maximizing a CVLL function, which assesses the likelihood of reconstructed images using one subset of a list-mode dataset based on another subset. This study aims to validate the efficacy of the CVLL method in whole-body imaging for cancer patients using a conventional clinical PET scanner.Approach.Fifteen lung cancer patients were injected with 243.7 ± 23.8 MBq of [18F]FDG and underwent a 22 min PET scan on a Biograph mCT PET/CT scanner, starting at 60 ± 5 min post-injection. The PET list-mode data were partitioned by subsampling without replacement, with 20 minutes of data for image reconstruction using an in-house ordered subset expectation maximization algorithm and the remaining 2 minutes of data for cross-validation. Two penalty parameters, penalty strengthßand Fair penalty function parameterδ, were subjected to optimization. Whole-body images were reconstructed, and CVLL values were computed across various penalty parameter combinations. The optimal image corresponding to the maximum CVLL value was selected by a grid search for each patient.Main results.Theδvalue required to maximize the CVLL value was notably small (⩽10-6in this study). The influences of voxel size and scan duration on image optimization were investigated. A correlation analysis revealed a significant inverse relationship between optimalßand scan count level, with a correlation coefficient of -0.68 (p-value = 3.5 × 10-5). The optimal images selected by the CVLL method were compared with those chosen by two radiologists based on their diagnostic preferences. Differences were observed in the selection of optimal images.Significance.This study demonstrates the feasibility of incorporating the CVLL method into routine imaging protocols, potentially allowing for a wide range of combinations of injected radioactivity amounts and scan durations in modern PET imaging.


Subject(s)
Image Processing, Computer-Assisted , Lung Neoplasms , Positron-Emission Tomography , Whole Body Imaging , Humans , Lung Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Whole Body Imaging/methods , Likelihood Functions , Male , Female , Positron Emission Tomography Computed Tomography
14.
medRxiv ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39252929

ABSTRACT

Quantitative total-body PET imaging of blood flow can be performed with freely diffusible flow radiotracers such as 15O-water and 11C-butanol, but their short half-lives necessitate close access to a cyclotron. Past efforts to measure blood flow with the widely available radiotracer 18F-fluorodeoxyglucose (FDG) were limited to tissues with high 18F-FDG extraction fraction. In this study, we developed an early-dynamic 18F-FDG PET method with high temporal resolution kinetic modeling to assess total-body blood flow based on deriving the vascular transit time of 18F-FDG and conducted a pilot comparison study against a 11C-butanol reference. Methods: The first two minutes of dynamic PET scans were reconstructed at high temporal resolution (60×1 s, 30×2 s) to resolve the rapid passage of the radiotracer through blood vessels. In contrast to existing methods that use blood-to-tissue transport rate ( K 1 ) as a surrogate of blood flow, our method directly estimates blood flow using a distributed kinetic model (adiabatic approximation to the tissue homogeneity model; AATH). To validate our 18F-FDG measurements of blood flow against a flow radiotracer, we analyzed total-body dynamic PET images of six human participants scanned with both 18F-FDG and 11C-butanol. An additional thirty-four total-body dynamic 18F-FDG PET scans of healthy participants were analyzed for comparison against literature blood flow ranges. Regional blood flow was estimated across the body and total-body parametric imaging of blood flow was conducted for visual assessment. AATH and standard compartment model fitting was compared by the Akaike Information Criterion at different temporal resolutions. Results: 18F-FDG blood flow was in quantitative agreement with flow measured from 11C-butanol across same-subject regional measurements (Pearson R=0.955, p<0.001; linear regression y=0.973x-0.012), which was visually corroborated by total-body blood flow parametric imaging. Our method resolved a wide range of blood flow values across the body in broad agreement with literature ranges (e.g., healthy cohort average: 0.51±0.12 ml/min/cm3 in the cerebral cortex and 2.03±0.64 ml/min/cm3 in the lungs, respectively). High temporal resolution (1 to 2 s) was critical to enabling AATH modeling over standard compartment modeling. Conclusions: Total-body blood flow imaging was feasible using early-dynamic 18F-FDG PET with high-temporal resolution kinetic modeling. Combined with standard 18F-FDG PET methods, this method may enable efficient single-tracer flow-metabolism imaging, with numerous research and clinical applications in oncology, cardiovascular disease, pain medicine, and neuroscience.

15.
Phys Med Biol ; 69(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38266297

ABSTRACT

Objective.This study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Approach.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response. First image evaluations were derived from phantom data spanning the entire axial FOV along with image data from a human subject with a large body mass index. Data was evaluated based on qualitative inspections, and contrast recovery, background variability, residual scatter removal from cold regions, biases and axial uniformity were quantified and compared to non-scatter-corrected images.Main results.All reconstructed images demonstrated qualitative and quantitative improvements compared to non-scatter-corrected images: contrast recovery coefficients improved by up to 17.2% and background variability was reduced by up to 34.3%, and the residual lung error was between 1.26% and 2.08%. Low biases throughout the axial FOV indicate high quantitative accuracy and axial uniformity of the corrections. Up to 99% of residual activity in cold areas in the human subject was removed, and the reliability of the method was demonstrated in challenging body regions like in the proximity of a highly attenuating knee prosthesis.Significance.The MC SC method employed was demonstrated to be accurate and robust in TB-PET. The results of this study can serve as a benchmark for optimizing the quantitative performance of future SC techniques.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Humans , Reproducibility of Results , Scattering, Radiation , Positron-Emission Tomography/methods , Algorithms , Monte Carlo Method , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
16.
ArXiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38351944

ABSTRACT

X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.

17.
medRxiv ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39108503

ABSTRACT

Blood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms. Our method uses high-temporal resolution dynamic imaging and kinetic modeling to jointly estimate cerebral blood flow and tracer-specific BBB transport rate from a single dynamic PET scan and measure the molecular permeability-surface area (PS) product of the radiotracer. We show our method can resolve BBB PS across three PET radiotracers with greatly differing permeabilities, measure reductions in BBB PS of 18F-fluorodeoxyglucose (FDG) in healthy aging, and demonstrate a possible brain-body association between decreased FDG BBB PS in patients with metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to efficiently study the molecular permeability of the human BBB in vivo using the large catalogue of available molecular PET tracers.

18.
J Nucl Med ; 65(7): 1101-1106, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38664017

ABSTRACT

Our aim was to define a lower limit of reduced injected activity in delayed [18F]FDG total-body (TB) PET/CT in pediatric oncology patients. Methods: In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.49 MBq/kg dose of [18F]FDG. Five randomly subsampled low-count reconstructions were generated using », ⅛, [Formula: see text], and [Formula: see text] of the counts in the full-dose list-mode reference standard acquisition (20 min), to simulate dose reduction. For the 2 lowest-count reconstructions, smoothing was applied. Background uptake was measured with volumes of interest placed on the ascending aorta, right liver lobe, and third lumbar vertebra body (L3). Tumor lesions were segmented using a 40% isocontour volume-of-interest approach. Signal-to-noise ratio, tumor-to-background ratio, and contrast-to-noise ratio were calculated. Three physicians identified malignant lesions independently and assessed the image quality using a 5-point Likert scale. Results: In total, 113 malignant lesions were identified in 18 patients, who met the inclusion criteria. Of these lesions, 87.6% were quantifiable. Liver SUVmean did not change significantly, whereas a lower signal-to-noise ratio was observed in all low-count reconstructions compared with the reference standard (P < 0.0001) because of higher noise rates. Tumor uptake (SUVmax), tumor-to-background ratio, and total lesion count were significantly lower in the reconstructions with [Formula: see text] and [Formula: see text] of the counts of the reference standard (P < 0.001). Contrast-to-noise ratio and clinical image quality were significantly lower in all low-count reconstructions than with the reference standard. Conclusion: Dose reduction for delayed [18F]FDG TB PET/CT imaging in children is possible without loss of image quality or lesion conspicuity. However, our results indicate that to maintain comparable tumor uptake and lesion conspicuity, PET centers should not reduce the injected [18F]FDG activity below 0.5 MBq/kg when using TB PET/CT in pediatric imaging at 120 min after injection.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasms , Positron Emission Tomography Computed Tomography , Radiation Dosage , Whole Body Imaging , Humans , Child , Female , Male , Neoplasms/diagnostic imaging , Adolescent , Child, Preschool , Prospective Studies , Radiopharmaceuticals , Signal-To-Noise Ratio , Image Processing, Computer-Assisted , Time Factors
19.
J Nucl Med ; 65(5): 714-721, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548347

ABSTRACT

The lungs are supplied by both the pulmonary arteries carrying deoxygenated blood originating from the right ventricle and the bronchial arteries carrying oxygenated blood downstream from the left ventricle. However, this effect of dual blood supply has never been investigated using PET, partially because the temporal resolution of conventional dynamic PET scans is limited. The advent of PET scanners with a long axial field of view, such as the uEXPLORER total-body PET/CT system, permits dynamic imaging with high temporal resolution (HTR). In this work, we modeled the dual-blood input function (DBIF) and studied its impact on the kinetic quantification of normal lung tissue and lung tumors using HTR dynamic PET imaging. Methods: Thirteen healthy subjects and 6 cancer subjects with lung tumors underwent a dynamic 18F-FDG scan with the uEXPLORER for 1 h. Data were reconstructed into dynamic frames of 1 s in the early phase. Regional time-activity curves of lung tissue and tumors were analyzed using a 2-tissue compartmental model with 3 different input functions: the right ventricle input function, left ventricle input function, and proposed DBIF, all with time delay and dispersion corrections. These models were compared for time-activity curve fitting quality using the corrected Akaike information criterion and for differentiating lung tumors from lung tissue using the Mann-Whitney U test. Voxelwise multiparametric images by the DBIF model were further generated to verify the regional kinetic analysis. Results: The effect of dual blood supply was pronounced in the high-temporal-resolution time-activity curves of lung tumors. The DBIF model achieved better time-activity curve fitting than the other 2 single-input models according to the corrected Akaike information criterion. The estimated fraction of left ventricle input was low in normal lung tissue of healthy subjects but much higher in lung tumors (∼0.04 vs. ∼0.3, P < 0.0003). The DBIF model also showed better robustness in the difference in 18F-FDG net influx rate [Formula: see text] and delivery rate [Formula: see text] between lung tumors and normal lung tissue. Multiparametric imaging with the DBIF model further confirmed the differences in tracer kinetics between normal lung tissue and lung tumors. Conclusion: The effect of dual blood supply in the lungs was demonstrated using HTR dynamic imaging and compartmental modeling with the proposed DBIF model. The effect was small in lung tissue but nonnegligible in lung tumors. HTR dynamic imaging with total-body PET can offer a sensitive tool for investigating lung diseases.


Subject(s)
Lung Neoplasms , Positron-Emission Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Male , Female , Middle Aged , Kinetics , Positron-Emission Tomography/methods , Models, Biological , Adult , Fluorodeoxyglucose F18 , Aged , Whole Body Imaging , Positron Emission Tomography Computed Tomography , Image Processing, Computer-Assisted , Time Factors , Radiopharmaceuticals/pharmacokinetics
20.
iScience ; 27(8): 110559, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39175781

ABSTRACT

Brown adipose tissue (BAT) in rodents appears to be an important tissue for the clearance of plasma branched-chain amino acids (BCAAs) contributing to improved metabolic health. However, the role of human BAT in plasma BCAA clearance is poorly understood. Here, we evaluate patients with prostate cancer who underwent positron emission tomography-computed tomography imaging after an injection of 18F-fluciclovine (L-leucine analog). Supraclavicular adipose tissue (AT; primary location of human BAT) has a higher net uptake rate for 18F-fluciclovine compared to subcutaneous abdominal and upper chest AT. Supraclavicular AT 18F-fluciclovine net uptake rate is lower in patients with obesity and type 2 diabetes. Finally, the expression of genes involved in BCAA catabolism is higher in the supraclavicular AT of healthy people with high BAT volume compared to those with low BAT volume. These findings support the notion that BAT can potentially function as a metabolic sink for plasma BCAA clearance in people.

SELECTION OF CITATIONS
SEARCH DETAIL