Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nature ; 582(7813): 592-596, 2020 06.
Article in English | MEDLINE | ID: mdl-32555458

ABSTRACT

Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported1, advances in mass-spectrometry-based proteomics2 have enabled increasingly comprehensive identification and quantification of the human proteome3-6. However, there have been few comparisons across species7,8, in stark contrast with genomics initiatives9. Here we use an advanced proteomics workflow-in which the peptide separation step is performed by a microstructured and extremely reproducible chromatographic system-for the in-depth study of 100 taxonomically diverse organisms. With two million peptide and 340,000 stringent protein identifications obtained in a standardized manner, we double the number of proteins with solid experimental evidence known to the scientific community. The data also provide a large-scale case study for sequence-based machine learning, as we demonstrate by experimentally confirming the predicted properties of peptides from Bacteroides uniformis. Our results offer a comparative view of the functional organization of organisms across the entire evolutionary range. A remarkably high fraction of the total proteome mass in all kingdoms is dedicated to protein homeostasis and folding, highlighting the biological challenge of maintaining protein structure in all branches of life. Likewise, a universally high fraction is involved in supplying energy resources, although these pathways range from photosynthesis through iron sulfur metabolism to carbohydrate metabolism. Generally, however, proteins and proteomes are remarkably diverse between organisms, and they can readily be explored and functionally compared at www.proteomesoflife.org.


Subject(s)
Classification , Deep Learning , Peptides/chemistry , Peptides/isolation & purification , Proteome/chemistry , Proteome/isolation & purification , Proteomics/methods , Animals , Bacteroides/chemistry , Bacteroides/classification , Carbohydrate Metabolism , Chromatography , Glycolysis , Homeostasis , Ion Transport , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction , Photosynthesis , Protein Biosynthesis , Protein Folding , Proteolysis , Species Specificity
2.
Mol Cell Proteomics ; 22(7): 100577, 2023 07.
Article in English | MEDLINE | ID: mdl-37209816

ABSTRACT

Accurate biomarkers are a crucial and necessary precondition for precision medicine, yet existing ones are often unspecific and new ones have been very slow to enter the clinic. Mass spectrometry (MS)-based proteomics excels by its untargeted nature, specificity of identification, and quantification, making it an ideal technology for biomarker discovery and routine measurement. It has unique attributes compared to affinity binder technologies, such as OLINK Proximity Extension Assay and SOMAscan. In in a previous review in 2017, we described technological and conceptual limitations that had held back success. We proposed a 'rectangular strategy' to better separate true biomarkers by minimizing cohort-specific effects. Today, this has converged with advances in MS-based proteomics technology, such as increased sample throughput, depth of identification, and quantification. As a result, biomarker discovery studies have become more successful, producing biomarker candidates that withstand independent verification and, in some cases, already outperform state-of-the-art clinical assays. We summarize developments over the last years, including the benefits of large and independent cohorts, which are necessary for clinical acceptance. Shorter gradients, new scan modes, and multiplexing are about to drastically increase throughput, cross-study integration, and quantification, including proxies for absolute levels. We have found that multiprotein panels are inherently more robust than current single analyte tests and better capture the complexity of human phenotypes. Routine MS measurement in the clinic is fast becoming a viable option. The full set of proteins in a body fluid (global proteome) is the most important reference and the best process control. Additionally, it increasingly has all the information that could be obtained from targeted analysis although the latter may be the most straightforward way to enter regular use. Many challenges remain, not least of a regulatory and ethical nature, but the outlook for MS-based clinical applications has never been brighter.


Subject(s)
Body Fluids , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers/analysis , Proteome/metabolism , Body Fluids/chemistry , Body Fluids/metabolism
3.
EMBO Rep ; 23(6): e53890, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35438230

ABSTRACT

Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Dementia , Neurons , Peptide Fragments , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Inclusion Bodies/metabolism , Neurons/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
Nucleic Acids Res ; 49(21): 12284-12305, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850154

ABSTRACT

Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnprtm1a/tm1a) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnprtm1a/tm1a mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with γ-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.


Subject(s)
Chromatin/genetics , DNA Damage , DNA Repair/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Motor Neurons/metabolism , Y-Box-Binding Protein 1/genetics , Animals , Axons/metabolism , Cell Line , Cells, Cultured , Chromatin/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Immunoblotting , Mice, Inbred C57BL , Mice, Knockout , Motor Neurons/cytology , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Y-Box-Binding Protein 1/metabolism
5.
Mol Syst Biol ; 16(6): e9356, 2020 06.
Article in English | MEDLINE | ID: mdl-32485097

ABSTRACT

Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Proteome/metabolism , Proteomics , Cohort Studies , Glycolysis , Humans , Machine Learning , Nerve Degeneration/pathology , Neurons/metabolism , Reproducibility of Results , tau Proteins/cerebrospinal fluid
7.
BMC Biol ; 18(1): 28, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32169085

ABSTRACT

BACKGROUND: Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS: We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS: Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.


Subject(s)
Carrier Proteins/genetics , Cell Membrane/metabolism , Phosphatidylinositol Phosphates/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Carrier Proteins/metabolism , Lipid Metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Nat Commun ; 15(1): 7430, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198412

ABSTRACT

Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons. Mutant mice display denervated neuromuscular junctions and impaired motor behavior. In axons, hnRNP R is a component of translation initiation complexes and, through interaction with O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), modulates O-GlcNAcylation of eIF4G. Restoring axonal O-GlcNAc levels rescued local protein synthesis and axon growth defects of hnRNP R knockout motoneurons. Together, these findings demonstrate a function of hnRNP R in controlling the local production of key factors required for axon growth and formation of neuromuscular innervations.


Subject(s)
Axons , Eukaryotic Initiation Factor-4G , Heterogeneous-Nuclear Ribonucleoproteins , Mice, Knockout , Motor Neurons , Protein Biosynthesis , Animals , Mice , Acetylglucosamine/metabolism , Axons/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Motor Neurons/metabolism , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Neuromuscular Junction/metabolism
9.
Cell Rep Med ; 4(1): 100877, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36584682

ABSTRACT

High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Brain Neoplasms/genetics , Glioma/genetics , Glioma/pathology , Mutation , Proteome/genetics , Proteomics , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19
10.
Nat Commun ; 14(1): 4158, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438340

ABSTRACT

The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.


Subject(s)
Axons , Motor Neurons , Cytosol , 3' Untranslated Regions , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA, Messenger/genetics
11.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35440494

ABSTRACT

The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.


Subject(s)
Membrane Proteins , Phosphatidylserines , Cell Membrane/metabolism , Homeostasis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylserines/metabolism , Phospholipids/metabolism , Synaptotagmins/metabolism
12.
Nat Commun ; 12(1): 1278, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627647

ABSTRACT

Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.


Subject(s)
RNA, Long Noncoding/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/metabolism , Animals , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Mice , Motor Neurons/metabolism , RNA, Long Noncoding/genetics , Ribonucleoproteins, Small Nuclear/genetics , SMN Complex Proteins/genetics , Tandem Mass Spectrometry , Transcription, Genetic/genetics
13.
Cell Rep ; 32(11): 108132, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937123

ABSTRACT

Gene and protein expression data provide useful resources for understanding brain function, but little is known about the lipid composition of the brain. Here, we perform quantitative shotgun lipidomics, which enables a cell-type-resolved assessment of the mouse brain lipid composition. We quantify around 700 lipid species and evaluate lipid features including fatty acyl chain length, hydroxylation, and number of acyl chain double bonds, thereby identifying cell-type- and brain-region-specific lipid profiles in adult mice, as well as in aged mice, in apolipoprotein-E-deficient mice, in a model of Alzheimer's disease, and in mice fed different diets. We also integrate lipid with protein expression profiles to predict lipid pathways enriched in specific cell types, such as fatty acid ß-oxidation in astrocytes and sphingolipid metabolism in microglia. This resource complements existing brain atlases of gene and protein expression and may be useful for understanding the role of lipids in brain function.


Subject(s)
Brain/cytology , Brain/metabolism , Lipidomics , Aging/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Cells, Cultured , Diet , Lipids/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/metabolism , Proteome/metabolism
14.
EMBO Mol Med ; 11(11): e10427, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31566909

ABSTRACT

Plasma and serum are rich sources of information regarding an individual's health state, and protein tests inform medical decision making. Despite major investments, few new biomarkers have reached the clinic. Mass spectrometry (MS)-based proteomics now allows highly specific and quantitative readout of the plasma proteome. Here, we employ Plasma Proteome Profiling to define quality marker panels to assess plasma samples and the likelihood that suggested biomarkers are instead artifacts related to sample handling and processing. We acquire deep reference proteomes of erythrocytes, platelets, plasma, and whole blood of 20 individuals (> 6,000 proteins), and compare serum and plasma proteomes. Based on spike-in experiments, we determine sample quality-associated proteins, many of which have been reported as biomarker candidates as revealed by a comprehensive literature survey. We provide sample preparation guidelines and an online resource ( www.plasmaproteomeprofiling.org) to assess overall sample-related bias in clinical studies and to prevent costly miss-assignment of biomarker candidates.


Subject(s)
Bias , Biomarkers/blood , Plasma/chemistry , Proteome/analysis , Proteomics/methods , Female , Germany , Healthy Volunteers , Humans , Male , Proteomics/standards , Specimen Handling/methods , Specimen Handling/standards
15.
Sci Rep ; 9(1): 6634, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036840

ABSTRACT

Huntington's disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronic in vivo two-photon calcium imaging to longitudinally monitor the activity of identified single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in cortical network function, with an increase in activity that affects a large fraction of cells and occurs rather abruptly within one week, preceeding the onset of motor defects. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and human HD autopsy cases reveal a reduction in perisomatic inhibitory synaptic contacts on layer 2/3 pyramidal cells. Taken together, our study provides a time-resolved description of cortical network dysfunction in behaving HD mice and points to disturbed excitation/inhibition balance as an important pathomechanism in HD.


Subject(s)
Huntington Disease/pathology , Motor Disorders/pathology , Motor Disorders/physiopathology , Animals , Disease Models, Animal , Female , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Disorders/metabolism , Promoter Regions, Genetic/genetics
16.
Life Sci Alliance ; 1(2): e201800070, 2018 May.
Article in English | MEDLINE | ID: mdl-30456350

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis patients with C9orf72 mutation show cytoplasmic poly-GR and poly-PR aggregates. Short poly-(Gly-Arg) and poly-(Pro-Arg) (poly-GR/PR) repeats localizing to the nucleolus are toxic in various model systems, but no interactors have been validated in patients. Here, the neuronal interactomes of cytoplasmic GFP-(GR)149 and nucleolar (PR)175-GFP revealed overlapping RNA-binding proteins, including components of stress granules, nucleoli, and ribosomes. Overexpressing the poly-GR/PR interactors STAU1/2 and YBX1 caused cytoplasmic aggregation of poly-GR/PR in large stress granule-like structures, whereas NPM1 recruited poly-GR into the nucleolus. Poly-PR expression reduced ribosome levels and translation consistent with reduction of synaptic proteins detected by proteomics. Surprisingly, truncated GFP-(GR)53, but not GFP-(GR)149, localized to the nucleolus and reduced ribosome levels and translation similar to poly-PR, suggesting that impaired ribosome biogenesis may be driving the acute toxicity observed in vitro. In patients, only ribosomes and STAU2 co-aggregated with poly-GR/PR. Partial sequestration of ribosomes may chronically impair protein synthesis even in the absence of nucleolar localization and contribute to pathogenesis.

17.
Mol Biol Cell ; 27(7): 1170-80, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26864629

ABSTRACT

Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca(2+)-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase-mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Lipid Metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL