Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Small ; : e2403899, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984756

ABSTRACT

Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.

2.
Phys Rev Lett ; 132(13): 133001, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613300

ABSTRACT

Exciton-polaritons confined in plasmonic cavities are hybridized light-matter quasiparticles, with distinct optical characteristics compared to plasmons and excitons alone. Here, we demonstrate the electric tunability of a single polaritonic quantum dot operating at room temperature in electric-field tip-enhanced strong coupling spectroscopy. For a single quantum dot in the nanoplasmonic tip cavity with variable dc local electric field, we dynamically control the Rabi frequency with the corresponding polariton emission, crossing weak to strong coupling. We model the observed behaviors based on the quantum confined Stark effect in the strong coupling regime.

3.
Biomacromolecules ; 24(8): 3775-3785, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37405812

ABSTRACT

In this study, selective photo-oxidation (SPO) is proposed as a simple, fast, and scalable one-stop strategy that enables simultaneous self-patterning and sensitivity adjustment of ultrathin stretchable strain sensors. The SPO of an elastic substrate through irradiation time-controlled ultraviolet treatment in a confined region enables precise tuning of both the surface energy and the elastic modulus. SPO induces the hydrophilization of the substrate, thereby allowing the self-patterning of silver nanowires (AgNWs). In addition, it promotes the formation of nonpermanent microcracks of AgNWs/elastomer nanocomposites under the action of strain by increasing the elastic modulus. This effect improves sensor sensitivity by suppressing the charge transport pathway. Consequently, AgNWs are directly patterned with a width of 100 µm or less on the elastic substrate, and AgNWs/elastomer-based ultrathin and stretchable strain sensors with controlled sensitivity work reliably in various operating frequencies and cyclic stretching. Sensitivity-controlled strain sensors successfully detect both small and large movements of the human hand.


Subject(s)
Nanocomposites , Nanowires , Humans , Elastomers , Silver , Elastic Modulus
4.
Opt Express ; 30(24): 43534-43542, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523049

ABSTRACT

The high-dimensional encoding of single photons can offer various possibilities for enhancing quantum information processing. This work experimentally demonstrates the quantum interference of an engineered multidimensional quantum state through the space-division multiplexing of a heralded single-photon state with a spatial light modulator (SLM) and spatial-mode mixing of a single photon through a long multimode fiber (MMF). In our experiment, the heralded single photon generated from a warm 87Rb atomic ensemble was bright, robust, and long-coherent. The multidimensional spatial quantum state of the long-coherent single photon was transported through a 4-m-long MMF and arbitrarily controlled using the SLM. We observed the quantum interference of a single-photon multidimensional spatial quantum state with a visibility of >95%. These results may have potential applications in quantum information processing, for example, in photonic variational quantum eigensolve with high-dimensional single photons and realizing high information capacity per photon for quantum communication.

5.
J Nanosci Nanotechnol ; 19(8): 4803-4806, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30913792

ABSTRACT

The mechanical flexibility of both ferroelectric polymer and graphene provides the possibility for the memory device based on ferroelectric polymer and grapheme to operate on flexible substrate. Here, a memory device was fabricated on flexible substrate through the continuous transfer process of the two units with the ferroelectric polymer and the graphene hybrid film as one unit, and characterized. In particular, characteristics were maintained even with repetitive bending. The transfer process demonstrated in this paper is useful for implementing a memory device on a large-area substrate by consuming a very small amount of graphene.

6.
J Nanosci Nanotechnol ; 19(4): 2371-2374, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30487002

ABSTRACT

We investigated the electrical stability of bottom-gate/top-contact-structured indium oxide (In2O3) thin-film transistors (TFTs) in atmospheric air and under vacuum. The solution-processed In2O3 film exhibits a nanocrystalline morphology with grain boundaries. The fabricated In2O3 TFTs operate in an n-type enhancement mode. Over repeated TFT operation under vacuum, the TFTs exhibit a slight increase in the field-effect mobility, possibly due to multiple instances of the "trapping and release" behavior of electrons at grain boundaries. On the other hand, a decrease in the fieldeffect mobility and an increase in the hysteresis are observed as the measurement continues in atmospheric air. These results suggest that the electrical stability of solution-processed In2O3 TFTs is significantly affected by the electron-trapping phenomenon at crystal grain boundaries in the In2O3 semiconductor and the electrostatic interactions between electrons and polar water molecules.

7.
J Nanosci Nanotechnol ; 19(4): 2240-2246, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30486976

ABSTRACT

There are some reports related to applications of ultraviolet (UV) and water to enhance the electrical performance of metal oxide thin-film transistors (TFTs). We recently discovered that treatment timing and treatment method are also important for a good metal oxide thin-film formation. There are different influences on the metal oxide TFTs' electrical properties based on the UV irradiation and water treatment timing. The field-effect mobility of TFTs treated with UV-irradiation and water, which was spin-coated on the UV-irradiated film after pre-annealing, increased to 4.71 cm²V-1s-1 and 6.41 cm²V-1s-1. This was higher than the 3.39 cm²V-1s-1 field-effect mobility of non-treated TFTs. On the other hands, TFTs which were fabricated by the same method, with only varying the treatment time, after post-annealing, exhibited the tendency to show a decrease in field-effect mobility to 1.93 cm²V-1s-1 and 1.32 cm²V-1s-1, gradually, showing a contrasting tendency with the former conditions.

8.
J Nanosci Nanotechnol ; 19(8): 4638-4642, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30913760

ABSTRACT

We demonstrate the preparation of water-dispersible polyaniline:polystyrene sulfonate (PANI:PSS), which was doped with camphorsulfonic acid (CSA) and co-doped with poly (4-styrenesulfonic acid) (PSS). The proper formation of the PANI and PANI:PSS was verified by FTIR measurements. The synthesized samples were further characterized via UV-vis spectroscopy. The intensive study on the current density (J)-voltage (V) characteristics within the temperature range (143-303 K) of the synthesized sample was performed systematically. The electrical study shows that the doping of PANI with CSA as a dopant and PSS as a co-dopant significantly improves the overall semi-conducting property of PANI. The detailed analysis of the current density (J)-voltage (V) curve at various temperatures reveals the electrical conduction behavior, which follows the trap-dependent space-charge limited conduction (SCLC) mechanism.

9.
J Nanosci Nanotechnol ; 16(3): 2779-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455707

ABSTRACT

Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.


Subject(s)
Organic Chemicals/chemistry , Semiconductors
10.
J Prosthet Dent ; 111(1): 64-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24231434

ABSTRACT

STATEMENT OF PROBLEM: Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. PURPOSE: The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. MATERIAL AND METHODS: Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. RESULTS: The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. CONCLUSION: The cutting efficiencies of diamond rotary instruments with different designs and particle sizes showed a decreasing trend after repeated cuts but did not show any change after various disinfecting procedures.


Subject(s)
Dental High-Speed Equipment/standards , Diamond/chemistry , Tooth Preparation/instrumentation , Ceramics/chemistry , Dental Disinfectants/chemistry , Dental Materials/chemistry , Disinfection/methods , Equipment Design , Ethylene Oxide/chemistry , Humans , Immersion , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Spectrometry, X-Ray Emission , Sterilization/methods , Surface Properties , Tooth Preparation/standards
11.
Adv Sci (Weinh) ; 11(9): e2307494, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087893

ABSTRACT

With increasing demand for wearable electronics capable of computing huge data, flexible neuromorphic systems mimicking brain functions have been receiving much attention. Despite considerable efforts in developing practical neural networks utilizing several types of flexible artificial synapses, it is still challenging to develop wearable systems for complex computations due to the difficulties in emulating continuous memory states in a synaptic component. In this study, polymer conductivity is analyzed as a crucial factor in determining the growth dynamics of metallic filaments in organic memristors. Moreover, flexible memristors with bio-mimetic synaptic functions such as linearly tunable weights are demonstrated by engineering the polymer conductivity. In the organic memristor, the cluster-structured filaments are grown within the polymer medium in response to electric stimuli, resulting in gradual resistive switching and stable synaptic plasticity. Additionally, the device exhibits the continuous and numerous non-volatile memory states due to its low leakage current. Furthermore, complex hardware neural networks including ternary logic operators and a noisy image recognitions system are successfully implemented utilizing the developed memristor arrays. This promising concept of creating flexible neural networks with bio-mimetic weight distributions will contribute to the development of a new computing architecture for energy-efficient wearable smart electronics.


Subject(s)
Electronics , Wearable Electronic Devices , Electric Conductivity , Engineering , Polymers
12.
Nanomaterials (Basel) ; 14(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38535680

ABSTRACT

Herein, sol-gel-processed Y2O3 resistive random-access memory (RRAM) devices were fabricated. The top electrodes (TEs), such as Ag or Cu, affect the electrical characteristics of the Y2O3 RRAM devices. The oxidation process, mobile ion migration speed, and reduction process all impact the conductive filament formation of the indium-tin-oxide (ITO)/Y2O3/Ag and ITO/Y2O3/Cu RRAM devices. Between Ag and Cu, Cu can easily be oxidized due to its standard redox potential values. However, the conductive filament is easily formed using Ag TEs. After triggering the oxidation process, the formed Ag mobile metal ions can migrate faster inside Y2O3 active channel materials when compared to the formed Cu mobile metal ions. The fast migration inside the Y2O3 active channel materials successfully reduces the SET voltage and improves the number of programming-erasing cycles, i.e., endurance, which is one of the nonvolatile memory parameters. These results elucidate the importance of the electrochemical properties of TEs, providing a deeper understanding of how these factors influence the resistive switching characteristics of metal oxide-based atomic switches and conductive-metal-bridge-filament-based cells.

13.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727385

ABSTRACT

In this study, a Y2O3 insulator was fabricated via the sol-gel process and the effect of precursors and annealing processes on its electrical performance was studied. Yttrium(III) acetate hydrate, yttrium(III) nitrate tetrahydrate, yttrium isopropoxide oxide, and yttrium(III) tris (isopropoxide) were used as precursors, and UV/ozone treatment and high-temperature annealing were performed to obtain Y2O3 films from the precursors. The structure and surface morphologies of the films were characterized via grazing-incidence X-ray diffraction and scanning probe microscopy. Chemical component analysis was performed via X-ray spectroscopy. Electrical insulator characteristics were analyzed based on current density versus electrical field data and frequency-dependent dielectric constants. The Y2O3 films fabricated using the acetate precursor and subjected to the UV/ozone treatment showed a uniform and flat surface morphology with the lowest number of oxygen vacancy defects and unwanted byproducts. The corresponding fabricated capacitors showed the lowest current density (Jg) value of 10-8 A/cm2 at 1 MV/cm and a stable dielectric constant in a frequency range of 20 Hz-100 KHz. At 20 Hz, the dielectric constant was 12.28, which decreased to 10.5 at 105 Hz. The results indicate that high-quality, high-k insulators can be fabricated for flexible electronics using suitable precursors and the suggested low-temperature fabrication methods.

14.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38470795

ABSTRACT

The initial electrical characteristics and bias stabilities of thin-film transistors (TFTs) are vital factors regarding the practical use of electronic devices. In this study, the dependence of positive bias stress (PBS) instability on an initial threshold voltage (VTH) and its origin were analyzed by understanding the roles of slow and fast traps in solution-processed oxide TFTs. To control the initial VTH of oxide TFTs, the indium oxide (InOx) semiconductor was doped with aluminum (Al), which functioned as a carrier suppressor. The concentration of oxygen vacancies decreased as the Al doping concentration increased, causing a positive VTH shift in the InOx TFTs. The VTH shift (∆VTH) caused by PBS increased exponentially when VTH was increased, and a distinct tendency was observed as the gate bias stress increased due to a high vertical electric field in the oxide dielectric. In addition, the recovery behavior was analyzed to reveal the influence of fast and slow traps on ∆VTH by PBS. Results revealed that the effect of the slow trap increased as the VTH moved in the positive direction; this occured because the main electron trap location moved away from the interface as the Fermi level approached the conduction band minimum. Understanding the correlation between VTH and PBS instability can contribute to optimizing the fabrication of oxide TFT-based circuits for electronic applications.

15.
J Nanosci Nanotechnol ; 13(10): 7080-2, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24245196

ABSTRACT

We report on the thermal stability of nonvolatile memory characteristics in an organic ferroelectric field-effect transistor (OFeFET) with a ferroelectric polymer of poly(vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE)]. Pentacene-based OFeFETs are thermally annealed to understand how the thermal treatment affects nonvolatile memory characteristics. As increasing the annealing temperature up to 80 degrees C, both the memory window and the memory on-off ratio show no significant difference, while the memory properties results in rather monotonic reduction for beyond 80 degrees C which corresponds to the phase transition temperature of P(VDF-TrFE) molecules. It was found that the phase transition of the P(VDF-TrFE) from ferroelectric beta-phase to paraelectric gamma-phase at Curie's temperature plays a critical role for tailoring the electric characteristics in OFeFETs.

16.
Nanomaterials (Basel) ; 13(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903732

ABSTRACT

To realize oxide semiconductor-based complementary circuits and better transparent display applications, the electrical properties of p-type oxide semiconductors and the performance improvement of p-type oxide thin-film transistors (TFTs) are required. In this study, we report the effects of post-UV/ozone (O3) treatment on the structural and electrical characteristics of copper oxide (CuO) semiconductor films and the TFT performance. The CuO semiconductor films were fabricated using copper (II) acetate hydrate as a precursor material to solution processing and the UV/O3 treatment was performed as a post-treatment after the CuO film was fabricated. During the post-UV/O3 treatment for up to 13 min, the solution-processed CuO films exhibited no meaningful change in the surface morphology. On the other hand, analysis of the Raman and X-ray photoemission spectra of solution-processed CuO films revealed that the post-UV/O3 treatment induced compressive stress in the film and increased the composition concentration of Cu-O lattice bonding. In the post-UV/O3-treated CuO semiconductor layer, the Hall mobility increased significantly to approximately 280 cm2 V-1 s-1, and the conductivity increased to approximately 4.57 × 10-2 Ω-1 cm-1. Post-UV/O3-treated CuO TFTs also showed improved electrical properties compared to those of untreated CuO TFTs. The field-effect mobility of the post-UV/O3-treated CuO TFT increased to approximately 6.61 × 10-3 cm-2 V-1 s-1, and the on-off current ratio increased to approximately 3.51 × 103. These improvements in the electrical characteristics of CuO films and CuO TFTs can be understood through the suppression of weak bonding and structural defects between Cu and O bonds after post-UV/O3 treatment. The result demonstrates that the post-UV/O3 treatment can be a viable method to improve the performance of p-type oxide TFTs.

17.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063687

ABSTRACT

Lead-free Cs2AgBiBr6 double perovskite has emerged as a promising new-generation photovoltaic, due to its non-toxicity, long carrier lifetime, and low exciton binding energies. However, the low power conversion efficiency, due to the high indirect bandgap (≈2 eV), is a challenge that must be overcome and acts as an obstacle to commercialization. Herein, to overcome the limitations through the light trapping strategy, we analyzed the performance evaluation via FDTD simulation when applying the moth-eye broadband antireflection (AR) layer on top of a Cs2AgBiBr6 double perovskite cell. A parabola cone structure was used as a moth-eye AR layer, and an Al2O3 (n: 1.77), MgF2 (n: 1.38), SiO2 (n: 1.46), and ZnO (n: 1.9) were selected as investigation targets. The simulation was performed assuming that the IQE was 100% and when the heights of Al2O3, MgF2, SiO2, and ZnO were 500, 350, 250, and 450 nm, which are the optimal conditions, respectively, the maximum short-circuit current density improved 41, 46, 11.7, and 15%, respectively, compared to the reference cell. This study is meaningful and innovative in analyzing how the refractive index of a moth-eye antireflection layer affects the light trapping within the cell under broadband illumination until the NIR region.

18.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446433

ABSTRACT

Lead-free Cs2AgBiBr6 perovskites have emerged as a promising, non-toxic, and eco-friendly photovoltaic material with high structural stability and a long lifetime of carrier recombination. However, the poor-light harvesting capability of lead-free Cs2AgBiBr6 perovskites due to the large indirect band gap is a critical factor restricting the improvement of its power conversion efficiency, and little information is available about it. Therefore, this study focused on the plasmonic approach, embedded metallic nanospheres in Cs2AgBiBr6 perovskite solar cells, and quantitatively investigated their light-harvesting capability via finite-difference time-domain method. Gold and palladium were selected as metallic nanospheres and embedded in a 600 nm thick-Cs2AgBiBr6 perovskite layer-based solar cell. Performances, including short-circuit current density, were calculated by tuning the radius of metallic nanospheres. Compared to the reference devices with a short-circuit current density of 14.23 mA/cm2, when a gold metallic nanosphere with a radius of 140 nm was embedded, the maximum current density was improved by about 1.6 times to 22.8 mA/cm2. On the other hand, when a palladium metallic nanosphere with the same radius was embedded, the maximum current density was improved by about 1.8 times to 25.8 mA/cm2.

19.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38063682

ABSTRACT

The density of donor-like state distributions in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is thoroughly analyzed using photon energy irradiation. This study focuses on quantitatively calculating the distribution of density of states (DOS) in IZO semiconductors, with a specific emphasis on their variation with indium concentration. Two calculation methods, namely photoexcited charge collection spectroscopy (PECCS) and photocurrent-induced DOS spectroscopy (PIDS), are employed to estimate the density of the donor-like states. This dual approach not only ensures the accuracy of the findings but also provides a comprehensive perspective on the properties of semiconductors. The results reveal a consistent characteristic: the Recombination-Generation (R-G) center energy ET, a key aspect of the donor-like state, is acquired at approximately 3.26 eV, irrespective of the In concentration. This finding suggests that weak bonds and oxygen vacancies within the Zn-O bonding structure of IZO semiconductors act as the primary source of R-G centers, contributing to the donor-like state distribution. By highlighting this fundamental aspect of IZO semiconductors, this study enhances our understanding of their charge-transport mechanisms. Moreover, it offers valuable insight for addressing stability issues such as negative bias illumination stress, potentially leading to the improved performance and reliability of solution-processed IZO TFTs. The study contributes to the advancement of displays and technologies by presenting further innovations and applications for evaluating the fundamentals of semiconductors.

20.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570484

ABSTRACT

Understanding the density of state (DOS) distribution in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is crucial for addressing electrical instability. This paper presents quantitative calculations of the acceptor-like state distribution of solution-processed IZO TFTs using thermal energy analysis. To extract the acceptor-like state distribution, the electrical characteristics of IZO TFTs with various In molarity ratios were analyzed with respect to temperature. An Arrhenius plot was used to determine electrical parameters such as the activation energy, flat band energy, and flat band voltage. Two calculation methods, the simplified charge approximation and the Meyer-Neldel (MN) rule-based carrier-surface potential field-effect analysis, were proposed to estimate the acceptor-like state distribution. The simplified charge approximation established the modeling of acceptor-like states using the charge-voltage relationship. The MN rule-based field-effect analysis validated the DOS distribution through the carrier-surface potential relationship. In addition, this study introduces practical and effective approaches for determining the DOS distribution of solution-processed IZO semiconductors based on the In molarity ratio. The profiles of the acceptor-like state distribution provide insights into the electrical behavior depending on the doping concentration of the solution-processed IZO semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL