Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mutat ; 40(8): 1172-1180, 2019 08.
Article in English | MEDLINE | ID: mdl-31033086

ABSTRACT

One of most important factors for messenger RNA (mRNA) transcription is the spliceosomal component U1 small nuclear RNA (snRNA), which recognizes 5' splicing donor sites at specific regions in pre-mRNA. Mutations in these sites disrupt U1 snRNA binding and cause abnormal splicing. In this study, we investigated mutations at splice sites in SLC26A4 (HGNC 8818), one of the major causative genes of hearing loss, which may result in the synthesis of abnormal pendrin, the channel protein encoded by the gene. Seventeen SLC26A4 variants with mutations in the U1 snRNA binding sites were assessed by minigene splicing assays, and 11 were found to result in abnormal splicing. Interestingly, eight of the 11 pathogenic mutations were intronic, suggesting the importance of conserved sequences at the intronic splice site. The application of modified U1 snRNA effectively rescued the abnormal splicing for most of these mutations. Although three were cryptic mutations, they were rescued by cotransfection of modified U1 snRNA and modified antisense oligonucleotides. Our results demonstrate the important role of snRNA in SLC26A4 mutations, suggesting the therapeutic potential of modified U1 snRNA and antisense oligonucleotides for neutralizing the pathogenic effect of the splice-site mutations that may result in hearing loss.


Subject(s)
Hearing Loss, Sensorineural/genetics , Oligonucleotides, Antisense/pharmacology , RNA, Small Nuclear/pharmacology , Sulfate Transporters/genetics , Alternative Splicing/drug effects , Base Sequence , Binding Sites , Conserved Sequence , HeLa Cells , Hearing Loss, Sensorineural/therapy , Humans , Introns , Mutation , RNA Splice Sites , RNA, Small Nuclear/metabolism , Sulfate Transporters/chemistry , Sulfate Transporters/metabolism
2.
Nanomedicine ; 14(7): 2095-2102, 2018 10.
Article in English | MEDLINE | ID: mdl-29969727

ABSTRACT

The-state-of-art CRISPR/Cas9 is one of the most powerful among the approaches being developed to rescue fundamental causes of gene-based inheritable diseases. Several strategies for delivering such genome editing materials have been developed, but the safety, efficacy over time, cost of production, and gene size limitations are still under debate and must be addressed to further improve applications. In this study, we evaluated branched forms of the polyethylenimine (PEI) - branched PEI 25 kDa (BPEI-25K) - and found that it could efficiently deliver CRISPR/Cas9 plasmids. Plasmid DNA expressing both guide RNA and Cas9 to target the Slc26a4 locus was successfully delivered into Neuro2a cells and meditated genome editing within the targeted locus. Our results demonstrated that BPEI-25K is a promising non-viral vector to deliver the CRISPR/Cas9 system in vitro to mediate targeted gene therapy, and these findings contribute to an understanding of CRISPR/Cas9 delivery that may enable development of successful in vivo techniques.


Subject(s)
CRISPR-Cas Systems , Drug Delivery Systems , Genetic Therapy , Neuroblastoma/therapy , Plasmids , Polyethyleneimine/chemistry , Sulfate Transporters/antagonists & inhibitors , Animals , Cell Proliferation , Mice , Neuroblastoma/genetics , Sulfate Transporters/genetics , Tumor Cells, Cultured
3.
J Biol Chem ; 291(16): 8632-43, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26895965

ABSTRACT

Dysfunction of renal primary cilia leads to polycystic kidney disease. We previously showed that the exocyst, a protein trafficking complex, is essential for ciliogenesis and regulated by multiple Rho and Rab family GTPases, such as Cdc42. Cdc42 deficiency resulted in a disruption of renal ciliogenesis and a polycystic kidney disease phenotype in zebrafish and mice. Here we investigate the role of Dynamin binding protein (also known as Tuba), a Cdc42-specific guanine nucleotide exchange factor, in ciliogenesis and nephrogenesis using Tuba knockdown Madin-Darby canine kidney cells and tuba knockdown in zebrafish. Tuba depletion resulted in an absence of cilia, with impaired apical polarization and inhibition of hepatocyte growth factor-induced tubulogenesis in Tuba knockdown Madin-Darby canine kidney cell cysts cultured in a collagen gel. In zebrafish, tuba was expressed in multiple ciliated organs, and, accordingly, tuba start and splice site morphants showed various ciliary mutant phenotypes in these organs. Co-injection of tuba and cdc42 morpholinos at low doses, which alone had no effect, resulted in genetic synergy and led to abnormal kidney development with highly disorganized pronephric duct cilia. Morpholinos targeting two other guanine nucleotide exchange factors not known to be in the Cdc42/ciliogenesis pathway and a scrambled control morpholino showed no phenotypic effect. Given the molecular nature of Cdc42 and Tuba, our data strongly suggest that tuba and cdc42 act in the same ciliogenesis pathway. Our study demonstrates that Tuba deficiency causes an abnormal renal ciliary and morphogenetic phenotype. Tuba most likely plays a critical role in ciliogenesis and nephrogenesis by regulating Cdc42 activity.


Subject(s)
Cytoskeletal Proteins/metabolism , Kidney/embryology , Organogenesis/physiology , Zebrafish Proteins/metabolism , Animals , Cilia/genetics , Cilia/metabolism , Cytoskeletal Proteins/genetics , Dogs , Gene Knockdown Techniques , Madin Darby Canine Kidney Cells , Mice , Zebrafish , Zebrafish Proteins/genetics , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
4.
FASEB J ; 29(11): 4473-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26183770

ABSTRACT

The vertebrate skeletal system has various functions, including support, movement, protection, and the production of blood cells. The development of cartilage and bones, the core components of the skeletal system, is mediated by systematic inter- and intracellular communication among multiple signaling pathways in differentiating progenitors and the surrounding tissues. Recently, Pannexin (Panx) 3 has been shown to play important roles in bone development in vitro by mediating multiple signaling pathways, although its roles in vivo have not been explored. In this study, we generated and analyzed Panx3 knockout mice and examined the skeletal phenotypes of panx3 morphant zebrafish. Panx3(-/-) embryos exhibited delays in hypertrophic chondrocyte differentiation and osteoblast differentiation as well as the initiation of mineralization, resulting in shortened long bones in adulthood. The abnormal progression of hypertrophic chondrogenesis appeared to be associated with the sustained proliferation of chondrocytes, which resulted from increased intracellular cAMP levels. Similarly, osteoblast differentiation and mineralization were delayed in panx3 morphant zebrafish. Taken together, our results provide evidence of the crucial roles of Panx3 in vertebrate skeletal development in vivo.


Subject(s)
Calcification, Physiologic/physiology , Cell Differentiation/physiology , Chondrocytes/metabolism , Connexins/metabolism , Osteoblasts/metabolism , Zebrafish/embryology , Animals , Chondrocytes/cytology , Connexins/genetics , Cyclic AMP/genetics , Cyclic AMP/metabolism , Mice , Mice, Knockout , Osteoblasts/cytology , Second Messenger Systems/physiology , Zebrafish/genetics
5.
Hum Mutat ; 35(12): 1506-1513, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230692

ABSTRACT

Mutations in COCH (coagulation factor C homology) cause autosomal-dominant nonsyndromic hearing loss with variable degrees of clinical onset and vestibular malfunction. We selected eight uncharacterized mutations and performed immunocytochemical and Western blot analyses to track cochlin through the secretory pathway. We then performed a comprehensive analysis of clinical information from DFNA9 patients with all 21 known COCH mutations in conjunction with cellular and molecular findings to identify genotype-phenotype correlations. Our studies revealed that five mutants were not secreted into the media: two von Willebrand factor A (vWFA) domain mutants, which were not transported from the endoplasmic reticulum to Golgi complex and formed high-molecular-weight aggregates in cell lysates, and three LCCL domain mutants, which were detected as intracellular dimeric cochlins. Mutant cochlins that were not secreted and accumulated in cells result in earlier age of onset of hearing defects. In addition, individuals with LCCL domain mutations show accompanying vestibular dysfunction, whereas those with vWFA domain mutations exhibit predominantly hearing loss. This is the first report showing failure of mutant cochlin transport through the secretory pathway, abolishment of cochlin secretion, and formation and retention of dimers and large multimeric intracellular aggregates, and high correlation with earlier onset and progression of hearing loss in individuals with these DFNA9-causing mutations.


Subject(s)
Deafness/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mutation , Vestibular Diseases/genetics , Genotype , Glycosylation , Humans , Phenotype , Protein Folding
6.
Am J Physiol Renal Physiol ; 307(12): F1334-41, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25298525

ABSTRACT

Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.


Subject(s)
Acute Kidney Injury/prevention & control , Endocytosis , ErbB Receptors/metabolism , Kidney Tubules/enzymology , Mitogen-Activated Protein Kinases/metabolism , Vesicular Transport Proteins/metabolism , Zebrafish Proteins/metabolism , Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Animals, Genetically Modified , Disease Models, Animal , Dogs , Endocytosis/drug effects , Enzyme Activation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kidney Tubules/drug effects , Kidney Tubules/pathology , Madin Darby Canine Kidney Cells , Oxidative Stress , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Time Factors , Transfection , Vesicular Transport Proteins/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
7.
Biochem Biophys Res Commun ; 446(1): 15-7, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24491558

ABSTRACT

The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ∼2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified.


Subject(s)
Forkhead Transcription Factors/genetics , Kidney/growth & development , Kidney/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Animals, Newborn , Base Sequence , DNA, Complementary/genetics , Gene Expression Regulation, Developmental , Mice , Molecular Sequence Data , Rats
8.
BMC Med Genet ; 14: 72, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23865914

ABSTRACT

BACKGROUND: The genetic heterogeneity of hearing loss makes genetic diagnosis expensive and time consuming using available methods. Whole-exome sequencing has recently been introduced as an alternative approach to identifying causative mutations in Mendelian disorders. METHODS: To identify the hidden mutations that cause autosomal recessive nonsyndromic hearing loss (ARNSHL), we performed whole-exome sequencing of 13 unrelated Korean small families with ARNSHL who were negative for GJB2 or SLC26A4 mutations. RESULTS: We found two novel compound heterozygous mutations, IVS11 + 1 and p.R2146Q, of MYO15A in one (SR903 family) of the 13 families with ARNSHL. In addition to these causative mutations, 13 nonsynonymous variants, including variants with uncertain pathogenicity (SR285 family), were identified in the coding exons of MYO15A from Korean exomes. CONCLUSION: This is the first report of MYO15A mutations in an East Asian population. We suggest that close attention should be paid to this gene when performing genetic testing of patients with hearing loss in East Asia. The present results also indicate that whole-exome sequencing is a valuable method for comprehensive medical diagnosis of a genetically heterogeneous recessive disease, especially in small-sized families.


Subject(s)
Exome/genetics , Hearing Loss, Sensorineural/genetics , Myosins/genetics , Asian People/genetics , Base Sequence , Chromosome Aberrations , Connexin 26 , Connexins/genetics , Genes, Recessive , Genetic Testing , Genetic Variation , Humans , Membrane Transport Proteins/genetics , Mutation , Republic of Korea , Sequence Analysis, DNA , Sulfate Transporters
9.
Free Radic Biol Med ; 204: 177-183, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37119862

ABSTRACT

Aminoglycoside, a medicinal category of antibiotics, are used in treatment of Gram-negative bacterial infections. Although they are the most widely-used antibiotics due to their high efficacy and low cost, several main adverse effects have been reported including nephrotoxicity and ototoxicity. Since drug-induced ototoxicity is one of the major etiological causes of acquired hearing loss, we examined cochlear hair cell damages caused by three aminoglycosides (amikacin, kanamycin, and gentamicin), and investigated protective property of an isoquinoline-type alkaloid, Berberine chloride (BC). Berberine, a well-known bioactive compound found from medicinal plants, has been known to have anti-inflammatory, antimicrobial effects. To determine protective effect of BC in aminoglycoside-induced ototoxicity, hair cell damages in aminoglycoside- and/or BC-treated hair cells using ex vivo organotypic culture system of mouse cochlea. Mitochondrial ROS levels and depolarization of mitochondrial membrane potential were analyzed, and TUNEL assay and immunostaining of cleaved caspase-3 were performed to detect apoptosis signals. As the results, it was found that BC significantly prevented aminoglycoside-induced hair cell loss and stereocilia degeneration by inhibiting excessive accumulation of mitochondrial ROS and subsequent loss of mitochondrial membrane potential. It eventually inhibited DNA fragmentation and caspase-3 activation, which were significant for all three aminoglycosides. This study is the first report suggested the preventative effect of BC against aminoglycoside-induced ototoxicity. Our data also suggests a possibility that BC has the potential to exert a protective effect against ototoxicity caused by various ototoxic drugs leading to cellular oxidative stress, not limited to aminoglycoside antibiotics.


Subject(s)
Berberine , Ototoxicity , Mice , Animals , Aminoglycosides/toxicity , Aminoglycosides/metabolism , Reactive Oxygen Species/metabolism , Ototoxicity/etiology , Ototoxicity/prevention & control , Ototoxicity/metabolism , Berberine/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Chlorides , Anti-Bacterial Agents/adverse effects , Hair Cells, Auditory
10.
Front Pharmacol ; 14: 1176881, 2023.
Article in English | MEDLINE | ID: mdl-37063286

ABSTRACT

Noise (noise-induced hearing loss), and ototoxic drugs (drug-induced ototoxicity), and aging (age-related hearing loss) are the major environmental factors that lead to acquired sensorineural hearing loss. So far, there have been numerous efforts to develop protective or therapeutic agents for acquired hearing loss by investigating the pathological mechanisms of each types of hearing loss, especially in cochlear hair cells and auditory nerves. Although there is still a lack of information on the underlying mechanisms of redox homeostasis and molecular redox networks in hair cells, an imbalance in mitochondrial reactive oxygen species (ROS) levels that enhance oxidative stress has been suggested as a key pathological factor eventually causing acquired sensorineural hearing loss. Thus, various types of antioxidants have been investigated for their abilities to support auditory cells in maintenance of the hearing function against ototoxic stimuli. In this review, we will discuss the scientific possibility of developing drugs that target particular key elements of the mitochondrial redox network in prevention or treatment of noise- and ototoxic drug-induced hearing loss.

11.
Genes Genomics ; 45(2): 225-230, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36630074

ABSTRACT

BACKGOUND: Hereditary hearing loss is one of the most common genetically heterogeneous defects in human. About 70% of hereditary hearing loss is defined as non-syndromic hearing loss showing loss of hearing ability without any other symptoms. Up to date, the identified genes associated with non-syndromic hearing loss are 128, including 52 genes for DFNA and 76 genes for DFNB. Because of high levels of heterogeneity, it is difficult to identify the causative factors for hearing loss using Sanger sequencing. OBJECTIVE: Our aim was to detect causative factors and investigate pathogenic mutations, which co-segregates within the candidate family. METHODS: We used Next Generation Sequencing technique to investigate whole-exome sequences of a Korean family with non-syndromic hereditary hearing loss. The family showed autosomal dominant inheritance pattern. RESULTS: We identified a novel missense variation, c.1978G > A in MYO7A gene, in the family with the autosomal dominant inheritance pattern. c.1978G > A produced Gly660Arg in the motor head domain of Myosin VIIA disrupt the ATP- and actin-binding motif function. CONCLUSION: This study is the first to report pathogenic mutations within MYO7A gene in Korean family and our data would facilitate diagnosing the primary cause of hereditary hearing loss in Korean.


Subject(s)
Deafness , Hearing Loss , Humans , Mutation, Missense , Hearing Loss/genetics , Deafness/genetics , Republic of Korea
12.
Biochim Biophys Acta ; 1812(4): 536-43, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20832469

ABSTRACT

Hearing loss is a common communication disorder caused by various environmental and genetic factors. Hereditary hearing loss is very heterogeneous, and most of such cases involve sensorineural defects in the auditory pathway. There are currently 57 known autosomal dominant non-syndromic hearing loss (DFNA) loci, and the causative genes have been identified at 22 of these loci. In the present study, we performed a genome-wide linkage analysis in a Korean family segregating autosomal dominant hearing loss. We observed linkage on chromosome 1p34, and at this locus, we detected a novel mutation consisting of an 18 nucleotide deletion in exon 4 of the KCNQ4 gene, which encodes a voltage-gated potassium channel. We carried out a functional in vitro study to analyze the effects of this mutation (c.664_681del) along with two previously described KCNQ4 mutations, p.W276S and p.G285C. Although the c.664_681del mutation is located in the intercellular loop and the two previously described mutations, p.W276S and p.G285C, are located in the pore region, all mutants inhibit normal channel function by a dominant negative effect. Our analysis indicates that the intercellular loop is as significant as the pore region as a potential site of pathogenic effects on KCNQ4 channel function.


Subject(s)
Amino Acid Sequence , Hearing Loss/genetics , KCNQ Potassium Channels/genetics , Sequence Deletion , Cell Line , Genes, Dominant , Genetic Linkage , Haplotypes , Molecular Sequence Data , Pedigree
13.
Genes Genomics ; 44(1): 1-7, 2022 01.
Article in English | MEDLINE | ID: mdl-34800260

ABSTRACT

BACKGROUND: Cisplatin (CP) is an effective anticancer drug broadly used for various types of cancers, but it has shown ototoxicity that results from oxidative stress. Berberine has been reported for its anti-oxidative stress suggesting its therapeutic potential for many diseases such as colitis, diabetes, and vascular dementia. OBJECTIVE: Organ of Corti of postnatal day 3 mouse cochlear explants were used to compare hair cells after the treatment with cisplatin alone or with berberine chloride (BC) followed by CP. METHODS: We investigated the potential of the anti-oxidative effect of BC against the cisplatin-induced ototoxicity. We observed a reduced aberrant bundle of stereocilia in hair cells in CP with BC pre-treated group. Caspase-3 immunofluorescence and TUNEL assay supported the hypothesis that BC attenuates the apoptotic signals induced by CP. Reactive oxygen species level in the mitochondria were investigated by MitoSOX Red staining and the mitochondrial membrane potentials were compared by JC-1 assay. RESULTS: BC decreased ROS generation with preserved mitochondrial membrane potentials in mitochondria as well as reduced DNA fragmentation in hair cells. In summary, our data indicate that BC might act as antioxidant against CP by reducing the stress in mitochondria resulting in cell survival. CONCLUSION: Our result suggests the therapeutic potential of BC for prevention of the detrimental effect of CP-induced ototoxicity.


Subject(s)
Berberine/pharmacology , Chlorides/pharmacology , Cisplatin/adverse effects , Ototoxicity/prevention & control , Animals , Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Berberine/chemistry , Caspase 3/metabolism , Cells, Cultured , Chlorides/chemistry , Cochlea/cytology , Cochlea/drug effects , Cochlea/metabolism , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , In Situ Nick-End Labeling , Membrane Potential, Mitochondrial/drug effects , Mice , Organ of Corti/cytology , Organ of Corti/drug effects , Organ of Corti/metabolism , Ototoxicity/etiology , Ototoxicity/metabolism , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism
14.
Antioxidants (Basel) ; 10(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34679662

ABSTRACT

Drug-induced hearing loss is a major type of acquired sensorineural hearing loss. Cisplatin and aminoglycoside antibiotics have been known to cause ototoxicity, and excessive accumulation of intracellular reactive oxygen species (ROS) are suggested as the common major pathology of cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Fursultiamine, also called thiamine tetrahydrofurfuryl disulfide, is a thiamine disulfide derivative that may have antioxidant effects. To evaluate whether fursultiamine can prevent cisplatin- and kanamycin-induced ototoxicity, we investigated their preventive potential using mouse cochlear explant culture system. Immunofluorescence staining of mouse cochlear hair cells showed that fursultiamine pretreatment reduced cisplatin- and kanamycin-induced damage to both inner and outer hair cells. Fursultiamine attenuated mitochondrial ROS accumulation as evidenced by MitoSOX Red staining and restored mitochondrial membrane potential in a JC-1 assay. In addition, fursultiamine pretreatment reduced active caspase-3 and TUNEL signals after cisplatin or kanamycin treatment, indicating that fursultiamine decreased apoptotic hair cell death. This study is the first to show a protective effect of fursultiamine against cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Our results suggest that fursultiamine could act as an antioxidant and anti-apoptotic agent against mitochondrial oxidative stress.in cochlear hair cells.

15.
J Hum Genet ; 55(1): 59-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19911014

ABSTRACT

Mutations in the DFNA5 gene are known to cause autosomal dominant non-syndromic hearing loss (ADNSHL). To date, five DFNA5 mutations have been reported, all of which were different in the genomic level. In this study, we ascertained a Korean family with autosomal dominant, progressive and sensorineural hearing loss and performed linkage analysis that revealed linkage to the DFNA5 locus on chromosome 7. Sequence analysis of DFNA5 identified a 3-bp deletion in intron 7 (c.991-15_991-13del) as the cause of hearing loss in this family. As the same mutation had been reported in a large Chinese family segregating DFNA5 hearing loss, we compared their DFNA5 mutation-linked haplotype with that of the Korean family. We found a conserved haplotype, suggesting that the 3-bp deletion is derived from a single origin in these families. Our observation raises the possibility that this mutation may be a common cause of autosomal dominant progressive hearing loss in East Asians.


Subject(s)
Asian People/genetics , Founder Effect , Hearing Loss, Sensorineural/genetics , Mutation , Receptors, Estrogen/genetics , China , Chromosomes, Human, Pair 7/genetics , Family , Genetic Linkage , Haplotypes , Humans , Korea , Pedigree
16.
Biomed Pharmacother ; 126: 110068, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32203888

ABSTRACT

Cisplatin (CP) is a chemotherapeutic drug used to treat cancerous solid tumors, but it causes serious side effects, including ototoxicity. The major cause of CP-induced ototoxicity is increased levels of mitochondrial reactive oxygen species (ROS). In this study, we examined the effect of 2-Isopropyl-3H-naphtho(1,2-d)imidazole-4,5-dione (KL1333), a ß-lapachone derivative, on CP-induced ototoxicity using ex vivo organotypic culture system of cochlea. Hair cell damages in CP-treated cochlear explants with or without KL1333 were compared by immunohistochemistry. CP-induced oxidative stress and the preventive effect of KL1333 were analyzed by measuring intracellular ROS levels and depolarization of mitochondrial membrane potential. Activation of apoptosis signaling pathway was detected using TUNEL assay and immunostaining of cleaved caspase-3. As the results, it was found that KL1333 pretreatment significantly decreased stereocilia degeneration and hair cell loss, and prevented an increase in mitochondrial ROS levels in response to CP. Immunohistochemical examinations of cochlear explants revealed greater caspase-3 immunopositivity in the CP group than in controls, while the KL1333 + CP group showed significantly less immunopositivity than the CP group (P < 0.05). Thus, it appeared that KL1333 protected hair cells in the organ of Corti from CP-induced apoptosis by decreasing mitochondrial damages due to the production of mitochondrial ROS. This study is the first report showed the preventive effect of KL1333 against CP-induced ototoxicity. Although further studies should be performed to determine if KL1333 could maintain anticancer effect of CP, our data cautiously suggests that the antioxidant KL1333 can be used as an effective anti-apoptotic agent to prevent ototoxicity caused by CP-induced oxidative stress, and may prove useful in preventing hearing loss caused by CP.


Subject(s)
Cisplatin/adverse effects , Cochlea/drug effects , Naphthoquinones/pharmacology , Ototoxicity/etiology , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Hair Cells, Auditory/drug effects , Immunohistochemistry , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Naphthoquinones/chemistry , Ototoxicity/drug therapy , Ototoxicity/prevention & control , Oxidative Stress/drug effects , Protective Agents/chemistry , Reactive Oxygen Species/metabolism , Tissue Culture Techniques
17.
Indian J Med Res ; 129(5): 525-33, 2009 May.
Article in English | MEDLINE | ID: mdl-19675380

ABSTRACT

BACKGROUND & OBJECTIVE: The alpha4 chain of the type 4 collagen family is an important component of the glomerular basement membrane (GBM) in the kidney. It is encoded by the COL4A4 gene, and mutations of this gene are known to be associated with thin basement membrane nephropathy (TBMN). To better understand the contribution of variants in the COL4A4 gene to TBMN, we investigated the sequence of the complete COL4A4 gene in 45 Korean patients with TBMN. METHODS: Genomic DNA was obtained from the peripheral blood lymphocytes. For the analysis of the COL4A4 gene, all the exons including splicing sites were amplified by PCR and screened by direct sequencing analysis. RESULTS: Eight novel COL4A4 sequence variants were found in these patients. Two of these variants, G199R and G1606E, were possibly pathogenic variants affecting the phenotype. None of these variants were observed in 286 chromosomes from normal Korean control subjects. In addition, 39 polymorphisms including 7 novel SNPs were identified in this study. INTERPRETATION & CONCLUSION: The frequency of COL4A4 mutations in Korean patients with TBMN is low and the other cases may have mutations in other genes like COL4A3. Screening of the COL4A3 gene and finding a novel causative gene for TBMN will help clarify the pathogenesis of this disorder and perhaps for distinguishing TBMN from Alport syndrome.


Subject(s)
Basement Membrane/pathology , Collagen Type IV/genetics , Glomerulonephritis, Membranous/genetics , Polymorphism, Genetic , Base Sequence , DNA Mutational Analysis , Glomerulonephritis, Membranous/pathology , Humans , Korea , Linkage Disequilibrium , Molecular Sequence Data
19.
Redox Biol ; 20: 544-555, 2019 01.
Article in English | MEDLINE | ID: mdl-30508699

ABSTRACT

Mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) is a major NADPH-producing enzyme which is essential for maintaining the mitochondrial redox balance in cells. We sought to determine whether IDH2 deficiency induces mitochondrial dysfunction and modulates auditory function, and investigated the protective potential of an antioxidant agent against reactive oxygen species (ROS)-induced cochlear damage in Idh2 knockout (Idh2-/-) mice. Idh2 deficiency leads to damages to hair cells and spiral ganglion neurons (SGNs) in the cochlea and ultimately to apoptotic cell death and progressive sensorineural hearing loss in Idh2-/- mice. Loss of IDH2 activity led to decreased levels of NADPH and glutathione causing abnormal ROS accumulation and oxidative damage, which might trigger apoptosis signal in hair cells and SGNs in Idh2-/- mice. We performed ex vivo experiments to determine whether administration of mitochondria-targeted antioxidants might protect or induce recovery of cells from ROS-induced apoptosis in Idh2-deficient mouse cochlea. MitoQ almost completely neutralized the H2O2-induced ototoxicity, as the survival rate of Idh2-/- hair cells were restored to normal levels. In addition, the lack of IDH2 led to the accumulation of mitochondrial ROS and the depolarization of ΔΨm, resulting in hair cell loss. In the present study, we identified that IDH2 is indispensable for the functional maintenance and survival of hair cells and SGNs. Moreover, the hair cell degeneration caused by IDH2 deficiency can be prevented by MitoQ, which suggests that Idh2-/- mice could be a valuable animal model for evaluating the therapeutic effects of various antioxidant candidates to overcome ROS-induced hearing loss.


Subject(s)
Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Isocitrate Dehydrogenase/deficiency , Mitochondria/genetics , Mitochondria/metabolism , Organophosphorus Compounds/pharmacology , Reactive Oxygen Species/metabolism , Ubiquinone/analogs & derivatives , Animals , Apoptosis/genetics , Biomarkers/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/drug therapy , Hearing Loss, Sensorineural/physiopathology , Homozygote , Immunohistochemistry , Mice , Mice, Knockout , Oxidation-Reduction , Oxidative Stress , Spiral Ganglion/cytology , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Ubiquinone/pharmacology
20.
BMC Med Genet ; 9: 94, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18954446

ABSTRACT

BACKGROUND: It is known that steroid usage and alcohol abuse are major etiological factors in the development of avascular necrosis (AVN), a bone disease that produces osteonecrosis of the femoral head. The facilitation of fat biosynthesis by steroids and alcohol disrupts the blood supply into the femoral head. SREBP-2 plays a central role in the maintenance of lipid homeostasis through stimulating expression of genes associated with cholesterol biosynthetic pathways. The aim of this study was to examine the association between the polymorphisms of the SREBP-2 gene and AVN susceptibility in the Korean population. METHODS: Four single nucleotide polymorphisms (SNP) in the SREBP-2 gene, IVS1+8408 T>C (rs2267439), IVS3-342 G>T (rs2269657), IVS11+414 G>A (rs1052717) and IVS12-1667 G>A (rs2267443), were selected from public databases and genotyped in 443 AVN patients and 273 control subjects by using single-based extension (SBE) genotyping. RESULTS: The minor allele (C) frequency of rs2267439 showed a significant protective effect on AVN (P = 0.01, OR; 0.75, 95% CI; 0.604-0.935), and the genotype frequencies of this polymorphism were also different from the controls in all alternative analysis models (P range, 0.009-0.03, OR; 0.647-0.744). In contrast, rs1052717 and rs2267443 polymorphisms were significantly associated with AVN risk. Further analysis based on pathological etiology showed that the genotypes of rs2267439, rs1052717 and rs2267443 were also significantly associated with AVN susceptibility in each subgroup. CONCLUSION: This study is the first report to evaluate the association between SREBP-2 gene polymorphisms and the susceptibility of AVN in the Korean population.


Subject(s)
Femur Head Necrosis/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Sterol Regulatory Element Binding Protein 2/genetics , Adult , Female , Femur Head Necrosis/etiology , Gene Frequency , Genotype , Haplotypes , Humans , Korea , Linkage Disequilibrium , Male , Middle Aged , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL