Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Microb Pathog ; 193: 106749, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879140

ABSTRACT

Bacteria-derived outer membrane vesicles (OMVs) can be engineered to incorporate foreign antigens. This study explored the potential of ClearColi™-derived OMVs as a natural adjuvant and a carrier (recombinant OMVs or rOMVs) for development of an innovative therapeutic vaccine candidate harboring HIV-1 Nef and Nef-Tat antigens. Herein, the rOMVs containing CytolysinA (ClyA)-Nef and ClyA-Nef-Tat fusion proteins were isolated from ClearColi™ strain. The presence of Nef and Nef-Tat proteins on their surface (rOMVNef and rOMVNef-Tat) was confirmed by western blotting after proteinase K treatment. Immune responses induced by Nef and Nef-Tat proteins emulsified with Montanide® ISA720 or mixed with OMVs, and also rOMVNef and rOMVNef-Tat were investigated in BALB/c mice. Additionally, the potency of splenocytes exposed to single-cycle replicable (SCR) HIV-1 virions was assessed for the secretion of cytokines in vitro. Our findings showed that the rOMVs as an antigen carrier (rOMVNef and rOMVNef-Tat) induced higher levels of IgG2a, IFN-γ and granzyme B compared to OMVs as an adjuvant (Nef + OMV and Nef-Tat + OMV), and also Montanide® ISA720 (Nef + Montanide and Nef-Tat + Montanide). Moreover, IFN-γ level in splenocytes isolated from mice immunized with rOMVNef-Tat was higher than other regimens after exposure to SCR virions. Generally, ClearColi™-derived rOMVs can serve as potent carriers for developing effective vaccines against HIV-1 infection.


Subject(s)
AIDS Vaccines , Adjuvants, Immunologic , HIV Infections , HIV-1 , Mice, Inbred BALB C , nef Gene Products, Human Immunodeficiency Virus , Animals , AIDS Vaccines/immunology , AIDS Vaccines/genetics , HIV-1/genetics , HIV-1/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/immunology , Mice , Adjuvants, Immunologic/administration & dosage , HIV Infections/prevention & control , HIV Infections/immunology , Female , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/immunology , Cytokines/metabolism , Immunoglobulin G/blood , HIV Antibodies/immunology , Bacterial Outer Membrane/metabolism , Vaccine Development , Humans , Drug Carriers , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Spleen/immunology
2.
Biochem Genet ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436816

ABSTRACT

Multiple myeloma is a type of malignant neoplasia whose treatment has changed over the past decade. This study aimed to investigate the effects of combination of Adenovector-carrying interleukin-24 and herpes simplex virus 1 thymidine kinase/ganciclovir on tumor growth, autophagy, and unfolded protein response mechanisms in mouse model of multiple myeloma. Six groups of mice, including Ad-HSV-tk/GCV, Ad-IL-24, Ad-HSV-tk/IL-24, Ad-GFP, and positive and negative controls, were investigated, and each group was injected every 72 h. The tumor size was measured several times. The expression of LC3B evaluated through western blotting and ASK-1, CHOP, Caspase-3, and ATF-6 genes in the UPR and apoptosis pathways were also analyzed by the quantitative polymerase chain reaction (qPCR) method. The present results showed that the injection of Ad-HSV-tk/GCV, Ad-HSV-tk/IL-24, and metformin reduced the tumor size. The expression of LC3B was significantly higher in the treatment groups and positive control groups compared to the negative control group. The expression of CHOP, caspase-3, and ATF-6 genes was significantly higher in the Ad-IL-24 group compared to the other treatment groups. Besides, the ASK-1 expression was significantly lower in the Ad-IL-24 group as compared to the other groups. Overall, the results indicated that the presence of the HSV-tk gene in the adenovectors reduced the size of tumors and induced autophagy by triggering the expression of LC3B protein. The presence of the IL-24 might affect tumor growth but not as much the therapeutic effect of HSV-tk. Furthermore, the results indicated that co-administration of IL-24 and HSV-tk had no synergistic effect on tumor size control.

3.
BMC Cancer ; 23(1): 519, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280571

ABSTRACT

BACKGROUND: Melanoma differentiation-associated gene 7 (Mda-7) encodes IL-24, which can induce apoptosis in cancer cells. A novel gene therapy approach to treat deadly brain tumors, recombinant mda-7 adenovirus (Ad/mda-7) efficiently kills glioma cells. In this study, we investigated the factors affecting cell survival and apoptosis and autophagy mechanisms that destroy glioma cells by Ad/IL-24. METHODS: Human glioblastoma U87 cell line was exposed to a multiplicity of infections of Ad/IL-24. Antitumor activities of Ad/IL-24 were assessed by cell proliferation (MTT) and lactate dehydrogenase (LDH) release analysis. Using flow cytometry, cell cycle arrest and apoptosis were investigated. Using the ELISA method, the tumor necrosis factor (TNF-α) level was determined as an apoptosis-promoting factor and Survivin level as an anti-apoptotic factor. The expression levels of TNF-related apoptosis inducing ligand(TRAIL) and P38 MAPK genes were assessed by the Reverse transcription-quantitative polymerase chain reaction(RT­qPCR) method. The expression levels of caspase-3 and protein light chain 3-II (LC3-II) proteins were analyzed by flow cytometry as intervening factors in the processes of apoptosis and autophagy in the cell death signaling pathway, respectively. RESULTS: The present findings demonstrated that transduction of IL-24 inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in glioblastoma. Compared with cells of the control groups, Ad/IL24-infected U87 cells exhibited significantly increased elevated caspase-3, and TNF-α levels, while the survivin expression was decreased. TRAIL was shown to be upregulated in tumor cells after Ad/IL-24 infection and studies of the apoptotic cascade regulators indicate that Ad/IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. In the current study, we demonstrate that P38 MAPK is significantly activated by IL-24 expression. In addition, the overexpression of mda-7/IL-24 in GBM cells induced autophagy, which was triggered by the upregulation of LC3-II. CONCLUSIONS: Our study demonstrates the antitumor effect of IL-24 on glioblastoma and may be a promising therapeutic approach for GBM cancer gene therapy.


Subject(s)
Glioblastoma , Humans , Survivin/genetics , Glioblastoma/pathology , Caspase 3/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Up-Regulation , Tumor Necrosis Factor-alpha/metabolism , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Autophagy/genetics , Cell Line, Tumor , TNF-Related Apoptosis-Inducing Ligand/pharmacology
4.
Virol J ; 18(1): 107, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059075

ABSTRACT

Reducing the pool of HIV-1 reservoirs in patients is a must to achieve functional cure. The most prominent HIV-1 cell reservoirs are resting CD4 + T cells and brain derived microglial cells. Infected microglial cells are believed to be the source of peripheral tissues reseedings and the emergence of drug resistance. Clearing infected cells from the brain is therefore crucial. However, many characteristics of microglial cells and the central nervous system make extremely difficult their eradication from brain reservoirs. Current methods, such as the "shock and kill", the "block and lock" and gene editing strategies cannot override these difficulties. Therefore, new strategies have to be designed when considering the elimination of brain reservoirs. We set up an original gene suicide strategy using latently infected microglial cells as model cells. In this paper we provide proof of concept of this strategy.


Subject(s)
Brain/virology , Genes, Transgenic, Suicide , HIV Infections , HIV-1 , Virus Latency , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Gene Editing , Humans , Microglia/virology
5.
Arch Virol ; 164(12): 3019-3026, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31598843

ABSTRACT

Polyethyleneimine (PEI) is a chemical compound that used is as a carrier in gene therapy/delivery. Some studies have investigated the microbicidal potential and antiviral activity (prophylactic or therapeutic) of PEI and its derivatives. The aim of this study was to investigate the effect of branched polyethyleneimine (bPEI) on human immunodeficiency virus (HIV) replication. Infected cells were treated with bPEI for 36 hours, and the concentration of the viral protein P24 (as a virus replication marker) was determined in cell culture supernatants. This study indicated that bPEI increased HIV replication and decreased the viability of infected cells through cytotoxicity. The toxicity of bPEI its association with and cell death (apoptosis, autophagy and necrosis) have been reported in several studies. To investigate bPEI-induced cytotoxicity, we examined apoptosis and autophagy in cells treated with bPEI, and a significant increase in HIV viral load, the P24 antigen level, autophagy, and necrosis observed. Thus, treatment with bPEI leads to cytotoxicity and higher HIV virus yield.


Subject(s)
HIV Infections/virology , HIV/drug effects , Polyethyleneimine/pharmacology , Virus Replication/drug effects , Autophagy/drug effects , HIV/genetics , HIV/physiology , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , HIV Infections/physiopathology , Humans , Polyethyleneimine/chemistry , Viral Load/drug effects
6.
Mol Biol Rep ; 46(1): 143-149, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30414104

ABSTRACT

The development of new combinations to empower better protection against HIV infection is particularly important. Anionic polymers can block HIV infection. In the current study, first generation (G1) and second generation (G2) novel water-soluble anionic citrate-PEG-citrate dendrimers were synthesized and characterized with Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and dynamic light scattering (DLS) methods. After the biocompatibility of the G2 dendrimer was determined, its antiviral activity was evaluated. This function may contribute to the peripheral groups of this dendrimer (carboxylate group). In order to measure the inhibitory effect of G2 on HIV infection, both pre-treatment (treated with G2 dendrimer before HIV infection) and co-treatment (simultaneously treated with G2 dendrimer and HIV infection) were used in vitro. The results showed the good synthesis of the G2 dendrimer, and the dendrimer showed antiviral properties (ICC50:0.4 mM) and low toxicity (CC50:0.6 mM) at high concentrations. A strong inhibitory effect was found when the co-treatment approach was used. This study achieved promising results which encourage the use of G2 dendrimers as anti-HIV agents.


Subject(s)
Citric Acid/pharmacology , HIV-1/drug effects , Polyethylene Glycols/pharmacology , Anti-HIV Agents/pharmacology , Citrates , Dendrimers/pharmacology , HIV Infections/drug therapy , HIV Infections/physiopathology , Humans , Polyelectrolytes , Polyethylene Glycols/chemical synthesis , Polymers/pharmacology
7.
J Res Med Sci ; 24: 31, 2019.
Article in English | MEDLINE | ID: mdl-31143232

ABSTRACT

BACKGROUND: Antiretroviral (ARV) therapy extends life for persons living with HIV. Antiretroviral treatment (ART) has been rapidly expanding coverage around the world, including in Iran. However, ART drug resistance also rapidly develops with expanding use and limits effectiveness and treatment options. The aim of this study was to monitor the appearance of new mutations conferring HIV pretreatment drug resistance in the treatment of naïve patients with HIV in Iran. MATERIALS AND METHODS: Blood samples were obtained from ARV treatment-naïve patients from 8 different provinces in Iran in 2016 for genotyping for drug resistance mutations. RESULTS: Sequences were successfully obtained from 90 specimens. Of these, 2 (2%) mutations conferring resistance to protease inhibitors, 2 (3%) conferring resistance to nucleoside reverse transcriptase inhibitors (NRTIs), and 9 (13%) conferring resistance to non-NRTI (NNRTI) were detected. Any ARV-resistant drug mutation was found in 11 patients (12%). CONCLUSION: Nearly one in 8 ARV-naïve patients had mutations associated with NNRTI resistance in diverse areas of Iran in 2016. Iranian ARV therapy guideline for HIV could consider non-NNRTI-based first-line therapies and expand routine drug resistance testing before treatment initiation as according to HIV drug resistance recommendations of the World Health Organization.

8.
Clin Lab ; 64(6): 955-963, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29945309

ABSTRACT

BACKGROUND: Human immunodeficiency virus-1 (HIV-1) is a viral infectious agent that gradually extinguishes the immune system, resulting in the acquired immune deficiency syndrome (AIDS). The aim of this study was to develop a TaqMan based detection assay to evaluate HIV-1 plasma viral load and to construct a stable internal positive control (IPC) and external positive control (EPC) RNA based on Armored RNA (AR) technology. METHODS: The MS2 maturase, coat protein gene and HIV-1 pol gene were cloned in pET-32a plasmid. The recently fabricated recombinant plasmid was transformed into Escherichia coli strain BL2 (DE3) and protein expression and Armored RNA was fabricated in presence of isopropyl-L-thio-D-galactopyranoside (IPTG). The Armored RNA was precipitated and purified by polyethylene glycol (PEG) and sephacryl S-200 chromatography. The stability of Armored RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy (TEM) and gel agarose electrophoresis. The specificity, sensitivity, inter- and intra-day precision, and the dynamic range of the assay were experimentally determined. RESULTS: The AR was stable in presence of ribonuclease, and the assay had a dynamic detection range from 101 to 105 copies of AR. The coefficient of variation (CV) was 4.8% for intra-assay and 5.8% for inter-assay precision. Clinical specificity and sensitivity of the assay were assessed at 100% and 96.66%, respectively. The linear regression analysis confirmed a high correlation between the in-house and the commercial assay, Real Star HIV-1-qRTPCR, respectively (R2 = 0.888). CONCLUSIONS: The AR standard is non-infectious and highly resistant in the presence of ribonuclease. The TaqMan assay developed is able to quantify HIV viral load based on a novel conserved region of HIV-1 pol gene which has minimal sequence inconsistency.


Subject(s)
HIV Infections/diagnosis , HIV-1/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Load , HIV Infections/blood , HIV-1/metabolism , Humans , RNA, Viral/blood , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Research Design/standards , Sensitivity and Specificity
9.
Intervirology ; 60(1-2): 33-37, 2017.
Article in English | MEDLINE | ID: mdl-28795954

ABSTRACT

BACKGROUND: Insufficient therapy during HIV-1 replication can promote the emergence of drug-resistant strains, reduce the effectiveness of antiretroviral treatment (ART), and increase the likelihood of the onward transmission of drug-resistant viruses. We characterized, for the first time, the prevalence of HIV-1 subtypes and drug resistance mutations in a western region of Iran. METHODS: This study was conducted among 122 patients on ART at a major referral center in Kermanshah, Iran. Nested PCR was performed using RT gene-specific primers from the pol gene. Sequencing was followed by amplification and purification of the desired sequence. Subtypes and mutations were determined using the Stanford HIV Drug Resistance Database. RESULTS: Most patients (92.6%) had subtype CRF 35-AD; 7.4% had subtype B. In total, 36.1% of the patients had at least 1 mutation associated with resistance RT inhibitors. The greatest rates of high-level resistance were observed for nevirapine (21.3%) and efavirenz (19.7%). CONCLUSIONS: Our results showed a high prevalence of drug resistance mutations in strains isolated from patients on treatment. At our center, we therefore recommend that genotyping be performed. This would allow the physician to prescribe appropriate drugs, reduce treatment costs, and increase the longevity and quality of life of patients.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Mutation , Adult , Antiretroviral Therapy, Highly Active , Female , Genes, pol , Genotype , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/transmission , HIV Reverse Transcriptase/genetics , High-Throughput Nucleotide Sequencing , Humans , Iran/epidemiology , Male , Middle Aged , Quality of Life , Virus Replication/drug effects
10.
Biotechnol Appl Biochem ; 64(2): 244-250, 2017 Mar.
Article in English | MEDLINE | ID: mdl-25923846

ABSTRACT

MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line.


Subject(s)
Breast Neoplasms/genetics , Genetic Therapy , Luciferases, Renilla/genetics , MicroRNAs/biosynthesis , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genetic Vectors , Humans , Luciferases, Renilla/biosynthesis , MCF-7 Cells , MicroRNAs/genetics , Transgenes
11.
Intervirology ; 59(3): 131-136, 2016.
Article in English | MEDLINE | ID: mdl-27974715

ABSTRACT

BACKGROUND: Increasing the accessibility of antiretroviral therapy (ART) has caused the emergence of drug resistance in patients receiving ART and in naïve patients. The aim of this study was to evaluate HIV subtype and drug resistance between naïve patients and ART-experienced patients. METHODS: Blood samples were collected from 78 antiretroviral and naïve HIV-1 patients; antiretroviral-resistant mutations and subtyping were then determined by sequencing pol regions. RESULTS: Phylogenetic analysis revealed that 96.1% of sequences belong to the CRF35-AD subtype. Transmitted drug resistance was determined in 14% of drug-naïve patients and 40% of ART-experienced patients. CONCLUSION: The findings of this study illustrated the importance of resistance testing before and during ART treatment. This study can be used to set up a best medicine strategy in Iranian guidelines.


Subject(s)
Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Adult , Anti-HIV Agents/pharmacology , Coinfection/epidemiology , Coinfection/virology , Cross-Sectional Studies , Female , Genes, pol , Genotype , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Iran/epidemiology , Male , Middle Aged , Mutation , Phylogeny , Sequence Analysis, DNA , Young Adult
12.
Arch Virol ; 161(9): 2503-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27368990

ABSTRACT

Resistance to antiretroviral agents is a significant concern in the clinical management of HIV-infected individuals, particularly in areas of the world where treatment options are limited. In this study, we aimed to identify HIV drug-resistance-associated mutations in 40 drug-naïve patients and 62 patients under antiretroviral therapy (ART) referred to the Shiraz HIV/AIDS Research Center - the first such data available for the south of Iran. HIV reverse transcriptase and protease genes were amplified and sequenced to determine subtypes and antiretroviral- resistance-associated mutations (RAMs). Subtype CRF35-AD recombinant was the most prevalent in all patients (98 of 102, 96 %), followed by subtype A1, and subtype B (one each, 2 %). Among the 40 ART-naïve patients, two mutations associated with nucleoside reverse transcriptase inhibitor (NRTI) resistance (two with Y115F and T215I) and three associated with non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance (two with G190S and Y181C, four with V179T) were found. Among ART-experienced patients, four mutations associated with resistance to NRTI, four with NNRTI, and five with protease inhibitors (PI) were found. Twenty patients with high levels of resistance were already on second-line therapy. We document for the first time in this region of Iran high levels of ART resistance to multiple drugs. Our findings call for more vigilant systematic ART resistance surveillance, increased resistance testing, careful management of patients with existing regimens, and strong advocacy for expansion of available drugs in Iran.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Multiple, Viral , HIV Infections/virology , HIV-1/drug effects , Adult , Cross-Sectional Studies , Female , Gene Expression Regulation, Viral , HIV Infections/epidemiology , HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Iran/epidemiology , Male , Middle Aged , Mutation
13.
J Med Virol ; 86(7): 1093-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24740443

ABSTRACT

Resistance to antiretroviral therapy (ART) threatens the success of programs to reduce HIV morbidity and mortality, particularly in countries with few treatment options. In the present study, genotype and phenotype data from ART-naïve and experienced hospitalized patients infected with HIV in Tehran, Iran were used to assess the prevalence and types of transmitted (TDR) and acquired drug resistance (ADR) mutations. All 30 participants naïve to ART and 62 of 70 (88.6%) participants receiving ART had detectable viral loads. Among participants receiving ART with sequencing data available (n = 62), 36 (58.1%) had at least one drug resistance mutation; the most common mutations were K103N (21.0%), M184V (19.4%), and the thymidine analogue mutations. Seven (11.3%), 27 (43.5%), and two (3.2%) of these participants had resistance to one, two, and three drug classes, respectively. High-level resistance to efavirenz (EFV) was more common among participants on EFV-based regimens than high-level lopinavir/ritonivar (LPV/r) resistance among those on LPV/r-based regimens (55.3% vs. 6.7%, P < 0.0001). Two (6.7%) antiretroviral-naïve participants had K103N mutations. These findings document an alarmingly high frequency of multiple HIV drug class resistance in Iran, confirm the presence of TDR, and highlight the need for systematic viral load monitoring and drug resistance testing, including at diagnosis. Expanded access to new antiretroviral medications from additional drug classes is needed.


Subject(s)
Drug Resistance, Viral , HIV Infections/virology , HIV/drug effects , Adult , Aged , Aged, 80 and over , Anti-HIV Agents/therapeutic use , Cross-Sectional Studies , Female , HIV/isolation & purification , HIV Infections/drug therapy , Humans , Iran/epidemiology , Male , Middle Aged , Mutation, Missense , Prevalence , RNA, Viral/genetics , Young Adult
14.
Iran J Public Health ; 53(3): 714-725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38919297

ABSTRACT

Background: We aimed to investigate miR-21-5p inhibition effect on lncRNA-XIST expression and apoptosis status of MCF-7 cells. Methods: The MCF-7 cells were cultured and transfected by the anti-miR-21-5p oligonucleotide and expression of miR-21-5p, lncRNA-XIST, apoptosis-associated genes (bax and p53) and one miR-21-5p-unrelated lncRNA (BC200) was assessed by RT-qPCR. Furthermore, cell viability checked by MTT assay and apoptosis and cell cycle in transfected cells were detected by flow cytometry. Also, bioinformatics analysis on the transcriptome data confirmed that the lncRNA XIST might have a critical role in breast cancer (BC) cell apoptosis through ceRNAs mechanism and possible regulatory interactions with miR-21-5p. Results: Expression of miR-21-5p and lncRNA-XIST was significantly down- and up-regulated respectively (P<0.05). However, there was no significant change in lncRNA-BC200 expression. Also, the expression of bax and p53 upraised significantly (P<0.05). In transfected cells, MTT and flow cytometry assays reported a highly significant decrease and increase in viability and apoptosis respectively. Conclusion: Inhibition of miR-21-5p resulted in significant upregulation of lncRNA-XIST and apoptosis-associated genes bax and p53, which led to the induction of apoptosis in MCF-7 cells. Therefore, more investigations may provide a valuable target for studies on molecular therapies for BC.

15.
Curr HIV Res ; 22(2): 109-119, 2024.
Article in English | MEDLINE | ID: mdl-38712371

ABSTRACT

BACKGROUND: Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate. METHODS: At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA-nef-tat and Nef-Tat protein) were prepared in large scale and high purity. The generation of the Nef-Tat protein was performed in the E. coli expression system using an IPTG inducer. Then, we evaluated and compared immune responses of homologous DNA prime/ DNA boost, homologous protein prime/ protein boost, and heterologous DNA prime/protein boost regimens in BALB/c mice. Finally, the ability of mice splenocytes to secret cytokines after exposure to single-cycle replicable (SCR) HIV-1 was compared between immunized and control groups in vitro. RESULTS: The nef-tat gene was successfully subcloned in eukaryotic pcDNA3.1 (-) and prokaryotic pET-24a (+) expression vectors. The recombinant Nef-Tat protein was generated in the E. coli Rosetta strain under optimized conditions as a clear band of ~ 35 kDa detected on SDS-PAGE. Moreover, transfection of pcDNA-nef-tat into HEK-293T cells was successfully performed using Lipofectamine 2000, as confirmed by western blotting. The immunization studies showed that heterologous DNA prime/protein boost regimen could significantly elicit the highest levels of Ig- G2a, IFN-γ, and Granzyme B in mice as compared to homologous DNA/DNA and protein/protein regimens. Moreover, the secretion of IFN-γ was higher in DNA/protein regimens than in DNA/DNA and protein/protein regimens after exposure of mice splenocytes to SCR HIV-1 in vitro. CONCLUSION: The chimeric HIV-1 Nef-Tat antigen was highly immunogenic, especially when applied in a heterologous prime/ boost regimen. This regimen could direct immune response toward cellular immunity (Th1 and CTL activity) and increase IFN-γ secretion after virus exposure.


Subject(s)
AIDS Vaccines , HIV-1 , Mice, Inbred BALB C , Recombinant Fusion Proteins , Vaccines, DNA , nef Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus , Animals , nef Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , AIDS Vaccines/immunology , AIDS Vaccines/genetics , Vaccines, DNA/immunology , Vaccines, DNA/genetics , HIV-1/immunology , HIV-1/genetics , tat Gene Products, Human Immunodeficiency Virus/immunology , tat Gene Products, Human Immunodeficiency Virus/genetics , Mice , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Humans , Female , T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Immunization, Secondary , Cytokines/metabolism , Escherichia coli/genetics , Escherichia coli/immunology
16.
Mol Biol Res Commun ; 13(3): 117-125, 2024.
Article in English | MEDLINE | ID: mdl-38915452

ABSTRACT

The use of a combination of three-drug regimen has improved HIV-1 infected patients' life span and quality; however the emergence of drug-resistant strains remains a main problem. Reverse transcriptase inhibitors (RTIs) consist of a main part of highly active anti-retroviral therapy (HAART) regimen. The present study aimed to investigate resistant mutations to RTI drugs in both treatment naïve and under treatment HIV patients in Mashhad city, north-eastern Iran. RNA was extracted from sera of 22 treatment naïve and 22 under treatment patients. The mean age of under treated and treatment naive groups were 38.5±6.7 and 40.8±7.9 respectively. cDNA was synthesized and amplified with Nested PCR assay targeting specific sequences of RT gene. The PCR products were sent for sequencing. Bidirectional sequencing results were analysed using HIV drug resistance database supplied by Stanford University (HIV Drug Resistance Database, https://hivdb.stanford.edu). Among under treatment patients 10 out of 22 (45%) had at least one high-level resistance mutation which was higher than high level resistance mutation rate among treatment naive cases (P<0.01). Detected resistance mutations were as follows: K101E, K103N, K103E, V106M, V108I, E138A, V179T, Y181C, M184V, Y188L, Y188H, Y188F, G190A, L210W, T215F, T215Y, K219Q, and P225H. A high level of resistance mutations to RT inhibitors was observed that causes drug resistance especially against lamivudine (3TC). Such mutations should be considered as probable responsible for therapeutic failure. Serial surveillance studies of circulating drug resistance mutations are recommended.

17.
Gastroenterol Hepatol Bed Bench ; 17(1): 45-56, 2024.
Article in English | MEDLINE | ID: mdl-38737929

ABSTRACT

Aim: The potency of Adenovector expressing Mda7-tLyp1 (Ad-Mda7-tLyp1) for death induction was evaluated on the breast (MCF7), liver (HepG2), and gastric (MKN45) cancer cell lines. Background: Mda-7 could be a possible complementary to traditional cancer therapy, and tethering to tumor-homing peptides (THPs) might improve its therapeutic efficacy. Methods: After the preparation of recombinant Ad-Mda7-tLyp1 and Ad-Mda7, the expression of recombinant proteins was analyzed by ELISA. Adenovectors were transduced (MOI=2-5) into Hep-G2, MCF7, MKN45, and normal skin fibroblast, then tumor-killing effect was measured by cytopathic effect (CPE) monitoring, MTT viability test, BAX gene expression analysis, and Caspase3/7 assay. Results: ELISA assay revealed a sustained level of recombinant protein secretion following Adenovector transduction. In CPE microscopy, all cancer cell lines showed a significant reduction (≥50%) in their normal phenotype after receiving Ad-Mda7-tLyp1 and Ad-Mda7. The viability was significantly lower compared to the control, indicating an anti-proliferating effect. In parallel, the viability test showed that Ad-Mda7 and Ad-Mda7-tLyp1 have a significant killing effect (≥50%) on MCF-7, Hep-G2, and MKN45 compared to normal fibroblast (P≤0.05). BAX gene expression analysis showed that both Ad-Mda7-tLyp1 and Ad-Mda7 vectors induced >2-fold increase of apoptosis (P<0.05), particularly in MCF7. Similarly, caspase3/7 activity showed a significant increase (P<0.05) following Ad-Mda7, and Ad-Mda7-tLyp1 transduction into cancer cell lines, but not in normal fibroblasts. Conclusion: The newly constructed Ad-Mda-tlyp1 showed a suitable tumor cell killing activity and enough specificity on studied cell lines.

18.
Iran Biomed J ; 28(4): 214-20, 2024 07 01.
Article in English | MEDLINE | ID: mdl-39044638

ABSTRACT

Background: Since the beginning of the SARS-CoV-2 pandemic, there have been mutations caused by new SARS-CoV-2 variants, such as Alpha, Beta, Gamma, Delta, and Omicron, recognized as the variants of concern (VOC) worldwide. These variants can affect vaccine efficacy, disease control, and treatment effectiveness. The present study aimed to evaluate the levels of total and neutralizing antibodies produced by PastoCoAd vaccine candidates against the VOC strains at different time points. Methods: Two vaccine candidates were employed against SARS-CoV-2 using adenoviral vectors: prime only (a mixture of rAd5-S and rAd5 RBD-N) and heterologous prime-boost (rAd5-S/SOBERANA vaccine). The immunogenicity of these vaccine candidates was assessed in mouse, rabbit, and hamster models using ELISA assay and virus neutralization antibody test. Results: The immunogenicity results indicated a significant increase in both total and neutralizing antibodies titers in the groups receiving the vaccine candidates at various time points compared to the control group (p < 0.05). The results also showed that the PastoCoAd vaccine candidates Ad5 S & RBD-N and Ad5 S/SOBERANA could neutralize the VOC strains in the animal models. Conclusion: The ability of vaccine candidate to neutralize the VOC strains in animal models by generating neutralizing antibodies at different time points may be attributed to the use of the platform based on the Adenoviral vector, the N proteins in the Ad5 S & RBD-N vaccine candidate, and the SOBERANA Plus booster in the Ad5 S/SOBERANA vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Rabbits , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice , COVID-19/immunology , COVID-19/prevention & control , Female , Cricetinae , Mice, Inbred BALB C , Disease Models, Animal , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Humans
19.
Int Immunopharmacol ; 114: 109533, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36508918

ABSTRACT

BACKGROUND: One of the problems with treating HIV-infected patients with ARVs is that the treatment can reduce viral load and does not increase the number of CD4 cells (immunological discordance). There are still challenges to treating HIV-positive patients. AIM: This study aimed to investigate the expression level of 18 miRNAs involved in the proliferation and differentiation of CD4+ T cells in a target (discordant immune response) and a control (immune response) group. METHODS: In this case-control study, 18 miRNAs were selected and synthesized according to the in-silico analysis and published literatures. RNA extraction was performed from PBMC cells of 30 HIV-1 positive patients in the sample bank. The expression level of microRNAs was calculated by the relative q PCR method (2-ΔΔCt method), and data were analyzed using GraphPad Prism software version 8.0.2. RESULTS: The results of fold change calculation and statistical analysis showed that the expression levels of miR-30b (p value: 0.01, fold change: 0.23), miR-155 (p value: 0.04, fold change: 0.44), miR-181a (p value: 0.01, fold change: 0.37), and miR-190b (p value: 0.01, fold change: 0.39) had a significant decrease in the target group compared to the control group. CONCLUSION: In summary, various studies have shown that miRNAs, including miR-30b, miR-155, miR-181a, and miR-190b, are involved in the proliferation, differentiation, and development of CD4+ T cells. One reason for the lack of increase in CD4+ T cells may be the reduced expression of these miRNAs.


Subject(s)
HIV-1 , MicroRNAs , Humans , MicroRNAs/metabolism , CD4-Positive T-Lymphocytes , HIV-1/physiology , Case-Control Studies , Leukocytes, Mononuclear/metabolism , Immunity
20.
Cell Stress Chaperones ; 28(4): 423-428, 2023 07.
Article in English | MEDLINE | ID: mdl-37133695

ABSTRACT

The endoplasmic reticulum (ER) response mechanism to cellular stress is mediated by the unfolded protein response/ER-associated degradation (UPR/ERAD) pathway. A viral infection can trigger ER stress and engage some transcription factors, depending on the host cell and virus type, activating or inhibiting autophagy. The relationship between ER response and autophagy in rabies has not been investigated yet. In the present study, the mouse brain was infected with street rabies virus (SRABV). Total RNA was extracted from the brains of animals, and cDNA was synthesized. Next, real-time PCR assay was performed using specific primers. The expression of hypoxanthine-guanine phosphoribosyltransferase (Hprt), CCAAT/enhancer binding protein homologous protein (CHOP), apoptosis signal-regulating kinase 1 (ASK1), activating transcription factor 6 (ATF6), and caspase 3 (CASP3) genes was also investigated. Based on the results, SRABV caused significant changes in the mRNA expression of ATF6, CHOP, and ASK1 genes in the brains of infected mice in the control group (group V). Treatment of infected cells with the pIRES-EGFP-Beclin-1 vector and rapamycin caused changes in nearly most of the parameters. However, alterations in CASP3 gene expression were only observed when the vector and the virus were simultaneously injected into the cells. Overall, protection and autophagy against cell death induced by SRABV infection can be achieved by activating the ER stress pathway, followed by a marked increase in the expression of ATF6, CHOP, ASK1, and CASP3 genes.


Subject(s)
Rabies virus , Mice , Animals , Rabies virus/genetics , Apoptosis , Caspase 3 , Unfolded Protein Response , Endoplasmic Reticulum Stress , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL