Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
Pharmacol Res ; 185: 106504, 2022 11.
Article in English | MEDLINE | ID: mdl-36243333

ABSTRACT

As the worldwide population progresses in age, there is an increasing need for effective treatments for age-associated musculoskeletal conditions such as osteoporosis and osteoarthritis (OA). Fisetin, a natural flavonoid, has garnered attention as a promising pharmaceutical option for treating or delaying the progression of osteoporosis and OA. However, there is no systematic review of the effects of fisetin on bone and cartilage. The aim of this review is to report the latest evidence on the effects of fisetin on bone and cartilage, with a focus on clinical significance. The PubMed, Embase, and Cochrane Library databases were searched up to December 9th 2021 to evaluate the effects of fisetin on bone and cartilage in in vitro studies and in vivo preclinical animal studies. The risk of bias, quality, study design, sample characteristics, dose and duration of fisetin treatment, and outcomes of the 13 eligible studies were analyzed in this systematic review. Qualitative evaluation was conducted for each study due to differences in animal species, cell type, created disease model, dose and duration of fisetin treatment, and time between intervention and assessment among the eligible studies. The beneficial effects of fisetin on osteoporosis have been demonstrated in in vitro and in vivo preclinical studies across animal species. Similarly, the beneficial effects of fisetin on OA have been demonstrated in in vivo preclinical animal studies, but the reports on OA are still limited. Fisetin, a natural supplement can be use in orthobiologics treatment, as adjuvant to orthopaedic surgery, to improve clinical outcome.


Subject(s)
Osteoarthritis , Osteoporosis , Animals , Flavonols/therapeutic use , Osteoarthritis/drug therapy , Osteoporosis/drug therapy , Cartilage
2.
Proc Natl Acad Sci U S A ; 116(17): 8615-8622, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30948630

ABSTRACT

Chronic psychosocial stress/trauma represents an increasing burden in our modern society and a risk factor for the development of mental disorders, including posttraumatic stress disorder (PTSD). PTSD, in turn, is highly comorbid with a plethora of inflammatory disorders and has been associated with increased bone fracture risk. Since a balanced inflammatory response after fracture is crucial for successful bone healing, we hypothesize that stress/trauma alters the inflammatory response after fracture and, consequently, compromises fracture healing. Here we show, employing the chronic subordinate colony housing (CSC) paradigm as a clinically relevant mouse model for PTSD, that mice subjected to CSC displayed increased numbers of neutrophils in the early fracture hematoma, whereas T lymphocytes and markers for cartilage-to-bone transition and angiogenesis were reduced. At late stages of fracture healing, CSC mice were characterized by decreased bending stiffness and bony bridging of the fracture callus. Strikingly, a single systemic administration of the ß-adrenoreceptor (AR) blocker propranolol before femur osteotomy prevented bone marrow mobilization of neutrophils and invasion of neutrophils into the fracture hematoma, both seen in the early phase after fracture, as well as a compromised fracture healing in CSC mice. We conclude that chronic psychosocial stress leads to an imbalanced immune response after fracture via ß-AR signaling, accompanied by disturbed fracture healing. These findings offer possibilities for clinical translation in patients suffering from PTSD and fracture.


Subject(s)
Fracture Healing , Inflammation , Osteogenesis , Receptors, Adrenergic, beta , Stress, Psychological , Animals , Chronic Disease , Disease Models, Animal , Fracture Healing/immunology , Fracture Healing/physiology , Inflammation/immunology , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Osteogenesis/immunology , Osteogenesis/physiology , Receptors, Adrenergic, beta/immunology , Receptors, Adrenergic, beta/metabolism , Signal Transduction/immunology , Signal Transduction/physiology , Stress, Psychological/immunology , Stress, Psychological/physiopathology
3.
Sensors (Basel) ; 22(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36016004

ABSTRACT

There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we created a 1-mm rabbit tibial defect and fixed the bone with a standard veterinary plate modified with a custom-designed housing that included two impedance sensors capable of wireless transmission. Impedance magnitude and phase measurements were transmitted every 48 h for up to 10 weeks. Bone healing was assessed by X-ray, µCT, and histology. Our results indicated the sensors successfully incorporated into the fracture callus and did not impede repair. Electrical impedance, resistance, and reactance increased steadily from weeks 3 to 7-corresponding to the transition from hematoma to cartilage to bone within the fracture gap-then plateaued as the bone began to consolidate. These three electrical readings significantly correlated with traditional measurements of bone healing and successfully distinguished between union and not-healed fractures, with the strongest relationship found with impedance magnitude. These results suggest that our EIS smart bone plate can provide continuous and highly sensitive quantitative tissue measurements throughout the course of fracture healing to better guide personalized clinical care.


Subject(s)
Fracture Healing , Fractures, Bone , Animals , Bone Plates , Bony Callus/diagnostic imaging , Bony Callus/pathology , Dielectric Spectroscopy/methods , Fractures, Bone/diagnostic imaging , Rabbits
4.
Development ; 144(2): 221-234, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28096214

ABSTRACT

Fractures heal predominantly through the process of endochondral ossification. The classic model of endochondral ossification holds that chondrocytes mature to hypertrophy, undergo apoptosis and new bone forms by invading osteoprogenitors. However, recent data demonstrate that chondrocytes transdifferentiate to osteoblasts in the growth plate and during regeneration, yet the mechanism(s) regulating this process remain unknown. Here, we show a spatially-dependent phenotypic overlap between hypertrophic chondrocytes and osteoblasts at the chondro-osseous border in the fracture callus, in a region we define as the transition zone (TZ). Hypertrophic chondrocytes in the TZ activate expression of the pluripotency factors [Sox2, Oct4 (Pou5f1), Nanog], and conditional knock-out of Sox2 during fracture healing results in reduction of the fracture callus and a delay in conversion of cartilage to bone. The signal(s) triggering expression of the pluripotency genes are unknown, but we demonstrate that endothelial cell conditioned medium upregulates these genes in ex vivo fracture cultures, supporting histological evidence that transdifferentiation occurs adjacent to the vasculature. Elucidating the cellular and molecular mechanisms underlying fracture repair is important for understanding why some fractures fail to heal and for developing novel therapeutic interventions.


Subject(s)
Cell Transdifferentiation/genetics , Chondrocytes/physiology , Neovascularization, Physiologic/physiology , Osteoblasts/physiology , Osteogenesis/physiology , Pluripotent Stem Cells/physiology , Animals , Bone and Bones/cytology , Bone and Bones/physiology , Bony Callus/growth & development , Bony Callus/metabolism , Cartilage/cytology , Cartilage/physiology , Cells, Cultured , Chondrocytes/cytology , Chondrogenesis/physiology , Fracture Healing/genetics , Fracture Healing/physiology , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic/genetics , Osteoblasts/cytology , Up-Regulation/genetics
5.
Curr Osteoporos Rep ; 16(4): 490-503, 2018 08.
Article in English | MEDLINE | ID: mdl-29959723

ABSTRACT

PURPOSE OF REVIEW: The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS: Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.


Subject(s)
Bone and Bones/physiology , Cartilage/physiology , Chondrocytes/cytology , Fracture Healing , Pericytes/cytology , Periosteum/cytology , Stem Cells , Bony Callus , Humans , Mesenchymal Stem Cells , Muscle, Skeletal/cytology
6.
J Biomed Mater Res A ; 112(5): 770-780, 2024 05.
Article in English | MEDLINE | ID: mdl-38095311

ABSTRACT

Mesenchymal stromal cells (MSCs) are a promising cell population for musculoskeletal cell-based therapies due to their multipotent differentiation capacity and complex secretome. Cells from younger donors are mechanosensitive, evidenced by changes in cell morphology, adhesivity, and differentiation as a function of substrate stiffness in both two- and three-dimensional culture. However, MSCs from older individuals exhibit reduced differentiation potential and increased senescence, limiting their potential for autologous use. While substrate stiffness is known to modulate cell phenotype, the influence of the mechanical environment on senescent MSCs is poorly described. To address this question, we cultured irradiation induced premature senescent MSCs on polyacrylamide hydrogels and assessed expression of senescent markers, cell morphology, and secretion of inflammatory cytokines. Compared to cells on tissue culture plastic, senescent MSCs exhibited decreased markers of the senescence associated secretory phenotype (SASP) when cultured on 50 kPa gels, yet common markers of senescence (e.g., p21, CDKN2A, CDKN1A) were unaffected. These effects were muted in a physiologically relevant heterotypic mix of healthy and senescent MSCs. Conditioned media from senescent MSCs on compliant substrates increased osteoblast mineralization compared to conditioned media from cells on TCP. Mixed populations of senescent and healthy cells induced similar levels of osteoblast mineralization compared to healthy MSCs, further indicating an attenuation of the senescent phenotype in heterotypic populations. These data indicate that senescent MSCs exhibit a decrease in senescent phenotype when cultured on compliant substrates, which may be leveraged to improve autologous cell therapies for older donors.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Humans , Culture Media, Conditioned/pharmacology , Cells, Cultured , Cell Proliferation , Phenotype
7.
OTA Int ; 7(2 Suppl): e303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38487400

ABSTRACT

Orthopaedic trauma remains a leading cause of patient morbidity, mortality, and global health care burden. Although significant advances have been made in the diagnosis, treatment, and rehabilitation of these injuries, complications such as malunion, nonunion, infection, disuse muscle atrophy and osteopenia, and incomplete return to baseline function still occur. The significant inherent clinical variability in fracture care such as differing patient demographics, injury patterns, and treatment protocols make standardized and replicable study, especially of cellular and molecular based mechanisms, nearly impossible. Hence, the scientists dedicated to improving therapy and treatments for patients with orthopaedic trauma rely on preclinical models. Preclinical models have proven to be invaluable in understanding the timing between implant insertion and bacterial inoculation on the bioburden of infection. Posttraumatic arthritis (PTOA) can take years to develop clinically, but with a porcine pilon fracture model, posttraumatic arthritis can be reliably induced, so different surgical and therapeutic strategies can be tested in prevention. Conversely, the racehorse presents a well-accepted model of naturally occurring PTOA. With preclinical polytrauma models focusing on chest injury, abdominal injury, multiple fractures, and/or head injury, one can study how various injury patterns affect fracture healing can be systemically studied. Finally, these preclinical models serve as a translational bridge to for clinical application in human patients. With selection of the right preclinical model, studies can build a platform to decrease the risk of emerging technologies and provide foundational support for therapeutic clinical trials. In summary, orthopaedic trauma preclinical models allow scientists to simplify a complex clinical challenge, to understand the basic pathways starting with lower vertebrate models. Then, R&D efforts progress to higher vertebrate models to build in more complexity for translation of findings to the clinical practice.

8.
Bioact Mater ; 39: 273-286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38832305

ABSTRACT

Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/ß-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding ß-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes. To optimize a delivery platform built on recent advancements in liposomal technologies, two FDA-approved ionizable phospholipids, DLin-MC3-DMA (MC3) and SM-102, were used to fabricate unique ionizable lipid nanoparticle (LNP) formulations and then tested for transfection efficacy both in vitro and in a murine tibia fracture model. Using firefly luciferase mRNA as a reporter gene to track and quantify transfection, SM-102 LNPs showed enhanced transfection efficacy in vitro and prolonged transfection, minimal fracture interference and no localized inflammatory response in vivo over MC3 LNPs. The generated ß-cateninGOF mRNA encapsulated in SM-102 LNPs (SM-102-ß-cateninGOF mRNA) showed bioactivity in vitro through upregulation of downstream canonical Wnt genes, axin2 and runx2. When testing SM-102-ß-cateninGOF mRNA therapeutic in a murine tibia fracture model, histomorphometric analysis showed increased bone and decreased cartilage composition with the 45 µg concentration at 2 weeks post-fracture. µCT testing confirmed that SM-102-ß-cateninGOF mRNA promoted bone formation in vivo, revealing significantly more bone volume over total volume in the 45 µg group. Thus, we generated a novel mRNA-based therapeutic encoding a ß-catenin mRNA and optimized an SM-102-based LNP to maximize transfection efficacy with a localized delivery.

9.
Orthop J Sports Med ; 12(2): 23259671231219217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343646

ABSTRACT

Background: While an association between femoroacetabular impingement (FAI) and osteoarthritis (OA) has been reported, the mechanistic differences and transition between the 2 conditions is not fully understood. In FAI, cartilage lesions at the femoral head-neck junction can sometimes be visualized during hip arthroscopy. Purpose/Hypothesis: The purpose of this study was to describe a unique dimpled pattern of superficial fissured cartilage lesions on the femoral head-neck junction at impingement site in patients with FAI syndrome (FAIS) and to evaluate the clinical, histological, and genetic phenotype of this cartilage. We hypothesized that the cartilage lesions may indicate risk for, or predict occurrence of, OA. Study Design: Controlled laboratory study. Methods: Six hips (6 patients; mean age, 34.2 ± 12.9 years; range, 19-54 years) with dimpled or fissured cartilage were included among patients who underwent hip arthroscopy for treatment of FAIS from October 2020 through December 2021. This affected cartilage (dimple-pattern group) and normal cartilage (control group) on the femoral head-neck junction were collected from the same patients and evaluated for histological quantification by Mankin scores and expression of proteins related to cartilage degeneration (eg, matrix metalloproteinase [MMP]-1, MMP-2, MMP-3, MMP-10, and MMP-12, tissue inhibitor of metalloproteinase [TIMP]-1 and TMP-2, aggrecan neopepitope CS846, and hyaluronic acid [HA]) with the use of Milliplex Multiplex Assays. Results: All 6 hips were of the mixed FAI subtype. Preoperatively, 4 of 6 hips had Tönnis grade 1 radiographic changes, which was associated with greater femoral head chondral damage visualized intraoperatively. Mankin scores for the normal cartilage group and the dimple-pattern group were 0.67 ± 0.82 and 3.3 ± 0.82, respectively. Dimple pattern fissured cartilage showed a significant increase in Mankin score (P = .031) and a significant increase in protein expression of CS846 (P = .031) compared with normal cartilage. There were no significant differences in MMPs, TIMPs, or HA levels between the 2 groups. Conclusion: The dimple pattern fissured cartilage, compared to normal cartilage, showed histologically significant cartilage degeneration and a significant increase in protein expression of CS846, a biomarker for early OA. Clinical Relevance: This lesion serves as helpful visual indicator of early degeneration of the cartilage of femoral head-neck junction caused by FAIS.

10.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854043

ABSTRACT

Background: Bone fracture is one of the most globally prevalent injuries, with an estimated 189 million bone fractures occurring annually. Delayed union or nonunion occurs in up to 15% of fractures and involves the interruption or complete failure of bone continuity following fracture. Preclinical testing is essential to support the translation of novel strategies to promote improved fracture repair treatment, but there is a paucity of small animal models that recapitulate clinical attributes associated with delayed fracture healing. This study explores whether the Zmpste24 -/- (Z24 -/- ) knockout mouse model of Hutchinson-Gilford progeria syndrome presents with delayed fracture healing. Leveraging the previously characterized Z24 -/- phenotype of genomic instability, epigenetic changes, and fragility, we hypothesize that these underlying alterations will lead to significantly delayed fracture healing relative to age-matched wild type (WT) controls. Methods: WT and Z24 -/- mice received intramedullary fixed tibia fractures at ∼12 weeks of age. Mice were sacrificed throughout the time course of repair for the collection of organs that would provide information regarding the local (fracture callus, bone marrow, inguinal lymph nodes) versus peripheral (peripheral blood, contralateral tibia, abdominal organs) tissue microenvironments. Analyses of these specimens include histomorphometry, µCT, mechanical strength testing, protein quantification, gene expression analysis, flow cytometry for cellular senescence, and immunophenotyping. Results: Z24 -/- mice demonstrated a significantly delayed rate of healing compared to WT mice with consistently smaller fracture calli containing higher proportion of cartilage and less bone after injury. Cellular senescence and pro-inflammatory cytokines were elevated in the Z24 -/- mice before and after fracture. These mice further presented with a dysregulated immune system, exhibiting generally decreased lymphopoiesis and increased myelopoiesis locally in the bone marrow, with more naïve and less memory T cell but greater myeloid activation systemically in the peripheral blood. Surprisingly, the ipsilateral lymph nodes had increased T cell activation and other pro-inflammatory NK and myeloid cells, suggesting that elevated myeloid abundance and activation contributes to an injury-specific hyperactivation of T cells. Conclusion: Taken together, these data establish the Z24 -/- progeria mouse as a model of delayed fracture healing that exhibits decreased bone in the fracture callus, with weaker overall bone quality, immune dysregulation, and increased cellular senescence. Based on this mechanism for delayed healing, we propose this Z24 -/- progeria mouse model could be useful in testing novel therapeutics that could address delayed healing. The Translational Potential of this Article: This study employs a novel animal model for delayed fracture healing that researchers can use to screen fracture healing therapeutics to address the globally prevalent issue of aberrant fracture healing.

11.
Aging Cell ; 23(5): e14113, 2024 05.
Article in English | MEDLINE | ID: mdl-38708778

ABSTRACT

Chronic conditions associated with aging have proven difficult to prevent or treat. Senescence is a cell fate defined by loss of proliferative capacity and the development of a pro-inflammatory senescence-associated secretory phenotype comprised of cytokines/chemokines, proteases, and other factors that promotes age-related diseases. Specifically, an increase in senescent peripheral blood mononuclear cells (PBMCs), including T cells, is associated with conditions like frailty, rheumatoid arthritis, and bone loss. However, it is unknown if the percentage of senescent PBMCs associated with age-associated orthopedic decline could be used for potential diagnostic or prognostic use in orthopedics. Here, we report senescent cell detection using the fluorescent compound C12FDG to quantify PBMCs senescence across a large cohort of healthy and osteoarthritic patients. There is an increase in the percent of circulating C12FDG+ PBMCs that is commensurate with increases in age and senescence-related serum biomarkers. Interestingly, C12FDG+ PBMCs and T cells also were found to be elevated in patients with mild to moderate osteoarthritis, a progressive joint disease that is strongly associated with inflammation. The percent of C12FDG+ PBMCs and age-related serum biomarkers were decreased in a small subgroup of study participants taking the senolytic drug fisetin. These results demonstrate quantifiable measurements in a large group of participants that could create a composite score of healthy aging sensitive enough to detect changes following senolytic therapy and may predict age-related orthopedic decline. Detection of peripheral senescence in PBMCs and subsets using C12FDG may be clinically useful for quantifying cellular senescence and determining how and if it plays a pathological role in osteoarthritic progression.


Subject(s)
Biomarkers , Cellular Senescence , Osteoarthritis , Phenotype , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Aging/pathology , Biomarkers/metabolism , Leukocytes, Mononuclear/metabolism , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology
12.
Front Bioeng Biotechnol ; 11: 1091157, 2023.
Article in English | MEDLINE | ID: mdl-36756385

ABSTRACT

Recombinant growth factors are used in tissue engineering to stimulate cell proliferation, migration, and differentiation. Conventional methods of growth factor delivery for therapeutic applications employ large amounts of these bioactive cues. Effective, localized growth factor release is essential to reduce the required dose and potential deleterious effects. The endogenous extracellular matrix (ECM) sequesters native growth factors through its negatively charged sulfated glycosaminoglycans. Mesenchymal stromal cells secrete an instructive extracellular matrix that can be tuned by varying culture and decellularization methods. In this study, mesenchymal stromal cell-secreted extracellular matrix was modified using λ-carrageenan as a macromolecular crowding (MMC) agent and decellularized with DNase as an alternative to previous decellularized extracellular matrices (dECM) to improve growth factor retention. Macromolecular crowding decellularized extracellular matrix contained 7.7-fold more sulfated glycosaminoglycans and 11.7-fold more total protein than decellularized extracellular matrix, with no significant difference in residual DNA. Endogenous BMP-2 was retained in macromolecular crowding decellularized extracellular matrix, whereas BMP-2 was not detected in other extracellular matrices. When implanted in a murine muscle pouch, we observed increased mineralized tissue formation with BMP-2-adsorbed macromolecular crowding decellularized extracellular matrix in vivo compared to conventional decellularized extracellular matrix. This study demonstrates the importance of decellularization method to retain endogenous sulfated glycosaminoglycans in decellularized extracellular matrix and highlights the utility of macromolecular crowding to upregulate sulfated glycosaminoglycan content. This platform has the potential to aid in the delivery of lower doses of BMP-2 or other heparin-binding growth factors in a tunable manner.

13.
Aging Cell ; 22(1): e13759, 2023 01.
Article in English | MEDLINE | ID: mdl-36536521

ABSTRACT

Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , MicroRNAs/metabolism , Cell Differentiation , Extracellular Vesicles/metabolism
14.
Ageing Res Rev ; 90: 101989, 2023 09.
Article in English | MEDLINE | ID: mdl-37442369

ABSTRACT

BACKGROUND: Quercetin, a natural flavonoid, has shown promise as a senolytic agent for various degenerative diseases. Recently, its protective effect against osteoarthritis (OA), a representative age-related disease of the musculoskeletal system, has attracted much attention. The aim of this study is to summarize and analyze the current literature on the effects of quercetin on OA cartilage in in vivo preclinical studies. METHODS: The Medline (via/using PubMed), Embase, and Web of Science databases were searched up to March 10th, 2023. Risk of bias and the qualitative assessment including mechanisms of all eligible studies and a meta-analysis of cartilage histological scores among the applicable studies was performed. RESULTS: A total of 12 in vivo animal studies were included in this systematic review. A random-effects meta-analysis was performed on six studies using the Osteoarthritis Research Society International (OARSI) scoring system, revealing that quercetin significantly improved OA cartilage OARSI scores (SMD, -6.30 [95% CI, -9.59 to -3.01]; P = 0.0002; heterogeneity: I2 = 86%). The remaining six studies all supported quercetin's protective effects against OA during disease and aging. CONCLUSIONS: Quercetin has shown beneficial effects on cartilage during OA across animal species. Future double-blind randomized controlled clinical trials are needed to verify the efficacy of quercetin in the treatment of OA in humans.


Subject(s)
Osteoarthritis, Knee , Osteoarthritis , Animals , Humans , Quercetin/therapeutic use , Senotherapeutics , Osteoarthritis/pathology , Aging , Osteoarthritis, Knee/therapy , Randomized Controlled Trials as Topic
15.
J Orthop Res ; 41(6): 1186-1197, 2023 06.
Article in English | MEDLINE | ID: mdl-36250617

ABSTRACT

Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the proregenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a promising regenerative component. Exosomes, which are nanosized lipid vesicles secreted by cells, encapsulate micro-RNA (miRNA), RNA, and proteins that drive MSCs regenerative potential with cell specific content. As such, there is an opportunity to optimize the regenerative potential of MSCs, and thus their secreted exosome fraction, to improve clinical efficacy. Exercise is one factor that has been shown to improve muscle progenitor cell function and regenerative potential. However, the effect of exercise on MSC exosome content and function is still unclear. To address this, we used an in vitro culture system to evaluate the effects of mechanical strain, an exercise mimetic, on C2C12 (muscle progenitor cell) exosome production and proregenerative function. Our results indicate that the total exosome production is increased by mechanical strain and can be regulated with different tensile loading regimens. Furthermore, we found that exosomes from mechanically stimulated cells increase proliferation and myogenic differentiation of naïve C2C12 cells. Lastly, we show that exosomal miRNA cargo is differentially expressed following strain. Gene ontology mapping suggests positive regulation of bone morphogenetic protein signaling, regulation of actin-filament-based processes, and muscle cell apoptosis may be at least partially responsible for the proregenerative effects of exosomes from mechanically stimulated C2C12 muscle progenitor cells.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/metabolism , Exosomes/metabolism , Cell Communication , Muscles/metabolism
16.
Front Immunol ; 14: 1074207, 2023.
Article in English | MEDLINE | ID: mdl-36761764

ABSTRACT

Introduction: Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods: Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results: We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion: Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.


Subject(s)
Brain Injuries, Traumatic , Fractures, Bone , Animals , Mice , Bony Callus/metabolism , Brain Injuries, Traumatic/immunology , Fracture Healing , Fractures, Bone/immunology , Osteogenesis/physiology
17.
Front Bioeng Biotechnol ; 11: 1295313, 2023.
Article in English | MEDLINE | ID: mdl-38264578

ABSTRACT

Introduction: Impaired fracture healing, specifically non-union, has been found to occur up to 14% in tibial shaft fractures. The current standard of care to treat non-union often requires additional surgeries which can result in long recovery times. Injectable-based therapies to accelerate fracture healing have the potential to mitigate the need for additional surgeries. Gene therapies have recently undergone significant advancements due to developments in nanotechnology, which improve mRNA stability while reducing immunogenicity. Methods: In this study, we tested the efficacy of mineral coated microparticles (MCM) and fluoride-doped MCM (FMCM) to effectively deliver firefly luciferase (FLuc) mRNA lipoplexes (LPX) to the fracture site. Here, adult mice underwent a tibia fracture and stabilization method and all treatments were locally injected into the fracture. Level of osteogenesis and amount of bone formation were assessed using gene expression and histomorphometry respectively. Localized and systemic inflammation were measured through gene expression, histopathology scoring and measuring C-reactive protein (CRP) in the serum. Lastly, daily IVIS images were taken to track and measure transfection over time. Results: MCM-LPX-FLuc and FMCM-LPX-FLuc were not found to cause any cytotoxic effects when tested in vitro. When measuring the osteogenic potential of each mineral composition, FMCM-LPX-FLuc trended higher in osteogenic markers through qRT-PCR than the other groups tested in a murine fracture and stabilization model. Despite FMCM-LPX-FLuc showing slightly elevated il-1ß and il-4 levels in the fracture callus, inflammation scoring of the fracture callus did not result in any differences. Additionally, an acute systemic inflammatory response was not observed in any of the samples tested. The concentration of MCM-LPX-FLuc and FMCM-LPX-FLuc that was used in the murine fracture model did not stimulate bone when analyzed through stereological principles. Transfection efficacy and kinetics of delivery platforms revealed that FMCM-LPX-FLuc prolongs the luciferase signal both in vitro and in vivo. Discussion: These data together reveal that FMCM-LPX-FLuc could serve as a promising mRNA delivery platform for fracture healing applications.

18.
Life (Basel) ; 13(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511942

ABSTRACT

BACKGROUND: Senescence, a characteristic of cellular aging and inflammation, has been linked to the acceleration of osteoarthritis. The purpose of this study is to prospectively identify, measure, and compare senescent profiles in synovial fluid and peripheral blood in patients with an acute knee injury within 48 h. METHODS: Seven subjects, aged 18-60 years, with an acute ACL tear with effusion were prospectively enrolled. Synovial fluid and peripheral blood samples were collected and analyzed by flow cytometry, using senescent markers C12FDG and CD87. The senescent versus pro-regenerative phenotype was probed at a gene and protein level using qRT-PCR and multiplex immunoassays. RESULTS: C12FDG and CD87 positive senescent cells were detected in the synovial fluid and peripheral blood of all patients. Pro-inflammatory IL-1ß gene expression measured in synovial fluid was significantly higher (p = 0.0156) than systemic/blood expression. Senescent-associated factor MMP-3 and regenerative factor TIMP-2 were significantly higher in synovial fluid compared to blood serum. Senescent-associated factor MMP-9 and regenerative factor TGFß-2 were significantly elevated in serum compared to synovial fluid. Correlation analysis revealed that C12FDG++/CD87++ senescent cells in synovial fluid positively correlated with age-related growth-regulated-oncogene (ρ = 1.00, p < 0.001), IFNγ (ρ = 1.00, p < 0.001), IL-8 (ρ = 0.90, p = 0.0374), and gene marker p16 (ρ = 0.83, p = 0.0416). CONCLUSIONS: There is an abundance of senescent cells locally and systemically after an acute ACL tear without a significant difference between those present in peripheral blood compared to synovial fluid. This preliminary data may have a role in identifying strategies to modify the acute environment within the synovial fluid, either at the time of acute ligament injury or reconstruction surgery.

19.
Front Bioeng Biotechnol ; 11: 1122456, 2023.
Article in English | MEDLINE | ID: mdl-36814717

ABSTRACT

Introduction: The central pathologic feature of osteoarthritis (OA) is the progressive loss of articular cartilage, which has a limited regenerative capacity. The TGF-ß1 inhibitor, losartan, can improve cartilage repair by promoting hyaline rather that fibrous cartilage tissue regeneration. However, there are concerns about side effects associated with oral administration and short retention within the joint following intra-articular injections. To facilitate local and sustained intra-articular losartan delivery we have designed an injectable peptide amphiphile (PA) nanofiber that binds losartan. The aims of this study are to characterize the release kinetics of losartan from two different PA nanofiber compositions followed by testing pro-regenerative bioactivity on chondrocytes. Methods: We tested the impact of electrostatic interactions on nanostructure morphology and release kinetics of the negatively charged losartan molecule from either a positively or negatively charged PA nanofiber. Subsequently, cytotoxicity and bioactivity were evaluated in vitro in both normal and an IL-1ß-induced OA chondrocyte model using ATDC5. Results: Both nanofiber systems promoted cell proliferation but that the positively-charged nanofibers also significantly increased glycosaminoglycans production. Furthermore, gene expression analysis suggested that losartan-encapsulated nanofibers had significant anti-inflammatory, anti-degenerative, and cartilage regenerative effects by significantly blocking TGF-ß1 in this in vitro system. Discussion: The results of this study demonstrated that positively charged losartan sustained-release nanofibers may be a novel and useful treatment for cartilage regeneration and OA by blocking TGF-ß1.

20.
J Osteoporos ; 2023: 5572754, 2023.
Article in English | MEDLINE | ID: mdl-36875869

ABSTRACT

Aging leads to several geriatric conditions including osteoporosis (OP) and associated frailty syndrome. Treatments for these conditions are limited and none target fundamental drivers of pathology, and thus identifying strategies to delay progressive loss of tissue homeostasis and functional reserve will significantly improve quality of life in elderly individuals. A fundamental property of aging is the accumulation of senescent cells. Senescence is a cell state defined by loss of proliferative capacity, resistance to apoptosis, and the release of a proinflammatory and anti-regenerative senescence-associated secretory phenotype (SASP). The accumulation of senescent cells and SASP factors is thought to significantly contribute to systemic aging. Senolytics-compounds which selectively target and kill senescent cells-have been characterized to target and inhibit anti-apoptotic pathways that are upregulated during senescence, which can elicit apoptosis in senescent cells and relieve SASP production. Senescent cells have been linked to several age-related pathologies including bone density loss and osteoarthritis in mice. Previous studies in murine models of OP have demonstrated that targeting senescent cells pharmacologically with senolytic drugs can reduce symptomology of the disease. Here, we demonstrate the efficacy of senolytic drugs (dasatinib, quercetin, and fisetin) to improve age-associated degeneration in bone using the Zmpste24-/- (Z24-/-) progeria murine system for Hutchinson-Gilford progeria syndrome (HGPS). We found that the combination of dasatinib plus quercetin could not significantly mitigate trabecular bone loss although fisetin administration could reduce bone density loss in the accelerated aging Z24-/- model. Furthermore, the overt bone density loss observed in the Z24-/- model reported herein highlights the Z24 model as a translational model to recapitulate alterations in bone density associated with advanced age. Consistent with the "geroscience hypothesis," these data demonstrate the utility of targeting a fundamental driver of systemic aging (senescent cell accumulation) to alleviate a common condition with age, bone deterioration.

SELECTION OF CITATIONS
SEARCH DETAIL