Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.025
Filter
Add more filters

Publication year range
1.
EMBO J ; 43(17): 3787-3806, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009676

ABSTRACT

Anthelmintics are drugs used for controlling pathogenic helminths in animals and plants. The natural compound betaine and the recently developed synthetic compound monepantel are both anthelmintics that target the acetylcholine receptor ACR-23 and its homologs in nematodes. Here, we present cryo-electron microscopy structures of ACR-23 in apo, betaine-bound, and betaine- and monepantel-bound states. We show that ACR-23 forms a homo-pentameric channel, similar to some other pentameric ligand-gated ion channels (pLGICs). While betaine molecules are bound to the classical neurotransmitter sites in the inter-subunit interfaces in the extracellular domain, monepantel molecules are bound to allosteric sites formed in the inter-subunit interfaces in the transmembrane domain of the receptor. Although the pore remains closed in betaine-bound state, monepantel binding results in an open channel by wedging into the cleft between the transmembrane domains of two neighboring subunits, which causes dilation of the ion conduction pore. By combining structural analyses with site-directed mutagenesis, electrophysiology and in vivo locomotion assays, we provide insights into the mechanism of action of the anthelmintics monepantel and betaine.


Subject(s)
Aminoacetonitrile , Anthelmintics , Betaine , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cryoelectron Microscopy , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Anthelmintics/pharmacology , Anthelmintics/metabolism , Anthelmintics/chemistry , Betaine/analogs & derivatives , Betaine/metabolism , Betaine/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/genetics , Protein Conformation , Models, Molecular
2.
Immunity ; 51(6): 1102-1118.e7, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757673

ABSTRACT

Young children are more susceptible to developing allergic asthma than adults. As neural innervation of the peripheral tissue continues to develop after birth, neurons may modulate tissue inflammation in an age-related manner. Here we showed that sympathetic nerves underwent a dopaminergic-to-adrenergic transition during post-natal development of the lung in mice and humans. Dopamine signaled through a specific dopamine receptor (DRD4) to promote T helper 2 (Th2) cell differentiation. The dopamine-DRD4 pathway acted synergistically with the cytokine IL-4 by upregulating IL-2-STAT5 signaling and reducing inhibitory histone trimethylation at Th2 gene loci. In murine models of allergen exposure, the dopamine-DRD4 pathway augmented Th2 inflammation in the lungs of young mice. However, this pathway operated marginally after sympathetic nerves became adrenergic in the adult lung. Taken together, the communication between dopaminergic nerves and CD4+ T cells provides an age-related mechanism underlying the susceptibility to allergic inflammation in the early lung.


Subject(s)
Adrenergic Neurons/cytology , Asthma/pathology , Dopamine/metabolism , Dopaminergic Neurons/cytology , Lung/pathology , Th2 Cells/immunology , Adolescent , Adult , Age Factors , Aged , Animals , Asthma/immunology , Cells, Cultured , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Interleukin-2/metabolism , Interleukin-4/immunology , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurogenesis/physiology , Receptors, Dopamine D4/metabolism , STAT5 Transcription Factor/metabolism , Sympathetic Nervous System/cytology
3.
Proc Natl Acad Sci U S A ; 120(2): e2206480120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595677

ABSTRACT

The resolution of infection is an active process with specific molecular and cellular mechanisms that temper inflammation and enhance pathogen clearance. Here, the specialized pro-resolving mediator (SPM) Maresin 1 (MaR1) inhibited respiratory syncytial virus (RSV)-induced inflammation. inlerleukin-13 production from type 2 innate lymphoid cells (ILC) and CD4 T helper type 2 cells was decreased by exogenous MaR1. In addition, MaR1 increased amphiregulin production and decreased RSV viral transcripts to promote resolution. MaR1 also promoted interferon-ß production in mouse lung tissues and also in pediatric lung slices. MaR1 significantly inhibited the RSV-triggered aberrant inflammatory phenotype in FoxP3-expressing Tregs. The receptor for MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was constitutively expressed on Tregs. Following RSV infection, mice lacking Lgr6 had exacerbated type 2 immune responses with an increased viral burden and blunted responses to MaR1. Together, these findings have uncovered a multi-pronged protective signaling axis for MaR1-Lgr6, improving Tregs's suppressive function and upregulating host antiviral genes resulting in decreased viral burden and pathogen-mediated inflammation, ultimately promoting restoration of airway mucosal homeostasis.


Subject(s)
Pneumonia, Viral , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Mice , Animals , Immunity, Innate , Lymphocytes , Inflammation , Docosahexaenoic Acids/pharmacology , Receptors, G-Protein-Coupled
4.
Am J Respir Cell Mol Biol ; 70(1): 26-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699145

ABSTRACT

Airway basal stem cells (BSCs) play a critical role in epithelial regeneration. Whether coronavirus disease (COVID-19) affects BSC function is unknown. Here, we derived BSC lines from patients with COVID-19 using tracheal aspirates (TAs) to circumvent the biosafety concerns of live-cell derivation. We show that BSCs derived from the TAs of control patients are bona fide bronchial BSCs. TA BSCs from patients with COVID-19 tested negative for severe acute respiratory syndrome coronavirus 2 RNA; however, these so-termed COVID-19-exposed BSCs in vitro resemble a predominant BSC subpopulation uniquely present in patients with COVID-19, manifested by a proinflammatory gene signature and STAT3 hyperactivation. Furthermore, the sustained STAT3 hyperactivation drives goblet cell differentiation of COVID-19-exposed BSCs in an air-liquid interface. Last, these phenotypes of COVID-19-exposed BSCs can be induced in control BSCs by cytokine cocktail pretreatment. Taken together, acute inflammation in COVID-19 exerts a long-term impact on mucociliary differentiation of BSCs.


Subject(s)
COVID-19 , Epithelial Cells , Humans , Stem Cells , Cell Differentiation/physiology , Bronchi
5.
Stroke ; 55(3): 660-669, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299341

ABSTRACT

BACKGROUND: Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS: This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS: Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS: Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Ischemic Stroke , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ischemic Stroke/chemically induced , UK Biobank , Biological Specimen Banks , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Nitrogen Oxides , Nitric Oxide , Genetic Risk Score , Environmental Exposure/adverse effects
6.
BMC Genomics ; 25(1): 106, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267855

ABSTRACT

BACKGROUND: Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS: The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS: Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.


Subject(s)
Camellia , Plant Growth Regulators , Plant Breeding , Gene Expression Profiling , Transcriptome , Camellia/genetics
7.
Int J Cancer ; 155(9): 1670-1683, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38949756

ABSTRACT

Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/classification , Brain Neoplasms/metabolism , Glioma/genetics , Glioma/pathology , Glioma/classification , Glioma/metabolism , Female , Male , Middle Aged , Adult , Brain/pathology , Brain/metabolism , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Oligodendroglioma/metabolism , Aged , Mutation , Isocitrate Dehydrogenase/genetics , Astrocytoma/pathology , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/classification , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/classification , Glioblastoma/metabolism
8.
J Cell Sci ; 135(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36226668

ABSTRACT

The heat shock cognate 71 kDa protein HSPA8 (also known as HSC70), a constitutively expressed cognate member of the heat shock protein 70 family, plays an essential role in protein quality control and cell homeostasis maintenance. HSPA8 has been implicated in many diseases, including cancers and neurodegenerative diseases. Owing to massive cell death after knockdown of HSPA8 and nonviable Hspa8 knockout mice, the physiological role of HSPA8 in vertebrates and its underlying mechanisms of action have not yet been elucidated. To address this issue, we used CRISPR/Cas9 technology and genetically deleted hspa8 in zebrafish embryos. Genetic deletion of hspa8 resulted in malformations of the pharyngeal arches, pectoral fins, head and eyes at the later stages. We next focused on pharyngeal arch deficiency and found that pharyngeal arches in hspa8 mutant embryos exhibited induction of endoplasmic reticulum stress and activation of the unfolded protein response via the Perk/p-eIF2α/Atf4 signaling cascade. Inhibition of Perk/p-eIF2α/Atf4 signaling rescued the developmental deficiency of pharyngeal arches caused by depletion of Hspa8. Taken together, our results provide novel insights into the tissue-specific roles of Hspa8 in the regulation of vertebrate embryonic development.


Subject(s)
Eukaryotic Initiation Factor-2 , Zebrafish , Mice , Animals , Eukaryotic Initiation Factor-2/metabolism , Unfolded Protein Response/genetics , Endoplasmic Reticulum Stress/genetics , Mice, Knockout , Embryonic Development/genetics
9.
BMC Plant Biol ; 24(1): 446, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778268

ABSTRACT

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.


Subject(s)
Droughts , Metabolome , Salvia miltiorrhiza , Transcriptome , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology
10.
Plant Biotechnol J ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302972

ABSTRACT

Kernel row number (KRN) is a major yield related trait for maize (Zea mays L.) and is also a major goal of breeders, as it can increase the number of kernels per plant. Thus, identifying new genetic factors involving in KRN formation may accelerate improving yield-related traits genetically. We herein describe a new kernel number-related gene (KRN5b) identified from KRN QTL qKRN5b and encoding an inositol polyphosphate 5-phosphatase (5PTase). KRN5b has phosphatase activity towards PI(4,5)P2, PI(3,4,5)P3, and Ins(1,4,5)P3 in vitro. Knocking out KRN5b caused accumulation of PI(4,5)P2 and Ins(1,4,5)P3, resulting in disordered kernel rows and a decrease in the number of kernels and tassel branches. The introgression of the allele with higher expression abundance into different inbred lines could increase the ear weight of the inbred lines and the corresponding hybrids by 10.1%-12.2% via increasing KRN, with no adverse effects on other agronomic traits. Further analyses showed that KRN5b regulates inflorescence development through affecting the synthesis and distribution of hormones. Together, KRN5b contributes to spikelet pair meristem development through inositol phosphate and phosphatidylinositols, making it a selecting target for yield improvement.

11.
Opt Express ; 32(4): 6706-6732, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439371

ABSTRACT

Given the importance of vector radiative transfer models in ocean color remote sensing and a lack of suitable models capable of analyzing the Earth curvature effects on Mie-scattering radiances, this study presents an enhanced vector radiative transfer model for a spherical shell atmosphere geometry by the Monte Carlo method (MC-SRTM), considering the effects of Earth curvature, different atmospheric conditions, flat sea surface reflectance, polarization, high solar and sensor geometries, altitudes and wavelengths. A Monte Carlo photon transport model was employed to simulate the vector radiative transfer processes and their effects on the top-of-atmosphere (TOA) radiances. The accuracy of the MC-SRTM was verified by comparing its scalar model outputs from Henyey-Greenstein (HG) phase function with the Kattawar-Adams model results, and the mean relative differences were less than 2.75% and 4.33% for asymmetry factors (g-values) of 0.5 and 0.7, respectively. The vector mode results of MC-SRTM for a spherical shell geometry with the Mie-scattering phase matrix were compared with the PCOART-SA model results (from Polarized Coupled Ocean-Atmosphere Radiative Transfer model based on the pseudo-spherical assumption), and the mean relative differences were less than 2.67% when solar zenith angles (SZAs) > 70 ∘ and sensor viewing zenith angles (VZAs) < 60 ∘ for two aerosol models (coastal and tropospheric models). Based on the MC-SRTM, the effects of Earth curvature on TOA radiances at high SZAs and VZAs were analyzed. For pure aerosol atmosphere, the effects of Earth curvature on TOA radiances reached up to 5.36% for SZAs > 70 ∘ and VZAs < 60 ∘ and reduced to less than 2.60% for SZAs < 70 ∘ and VZAs > 60 ∘. The maximum Earth curvature effect of pure aerosol atmosphere was nearly same (10.06%) as that of the ideal molecule atmosphere. The results also showed no statistically significant differences for the aerosol-molecule mixed and pure aerosol atmospheres. Our study demonstrates that there is a need to consider the Earth curvature effects in the atmospheric correction of satellite ocean color data at high solar and sensor geometries.

12.
J Magn Reson Imaging ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602245

ABSTRACT

BACKGROUND: The detection rate of lung nodules has increased considerably with CT as the primary method of examination, and the repeated CT examinations at 3 months, 6 months or annually, based on nodule characteristics, have increased the radiation exposure of patients. So, it is urgent to explore a radiation-free MRI examination method that can effectively address the challenges posed by low proton density and magnetic field inhomogeneities. PURPOSE: To evaluate the potential of zero echo time (ZTE) MRI in lung nodule detection and lung CT screening reporting and data system (lung-RADS) classification, and to explore the value of ZTE-MRI in the assessment of lung nodules. STUDY TYPE: Prospective. POPULATION: 54 patients, including 21 men and 33 women. FIELD STRENGTH/SEQUENCE: Chest CT using a 16-slice scanner and ZTE-MRI at 3.0T based on fast gradient echo. ASSESSMENT: Nodule type (ground-glass nodules, part-solid nodules, and solid nodules), lung-RADS classification, and nodule diameter (manual measurement) on CT and ZTE-MRI images were recorded. STATISTICAL TESTS: The percent of concordant cases, Kappa value, intraclass correlation coefficient (ICC), Wilcoxon signed-rank test, Spearman's correlation, and Bland-Altman. The p-value <0.05 is considered significant. RESULTS: A total of 54 patients (age, 54.8 ± 11.9 years; 21 men) with 63 nodules were enrolled. Compared with CT, the total nodule detection rate of ZTE-MRI was 85.7%. The intermodality agreement of ZTE-MRI and CT lung nodules type evaluation was substantial (Kappa = 0.761), and the intermodality agreement of ZTE-MRI and CT lung-RADS classification was moderate (Kappa = 0.592). The diameter measurements between ZTE-MRI and CT showed no significant difference and demonstrated a high degree of interobserver (ICC = 0.997-0.999) and intermodality (ICC = 0.956-0.985) agreements. DATA CONCLUSION: The measurement of nodule diameter by pulmonary ZTE-MRI is similar to that by CT, but the ability of lung-RADS to classify nodes from MRI images still requires further research. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

13.
Inorg Chem ; 63(8): 3637-3641, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38341868

ABSTRACT

Two unique 22-core sandwich {[Mn6Mo6O37]Ln3[MnMo6O24]} (Ln = La or Pr) units have been assembled, featuring an undisclosed {Mn6Mo6} cluster. This assembly is subsequently integrated into two three-dimensional polyoxometalate organic frameworks, which exhibit one-dimensional hydrophilic hexagonal channels formed by six intertwined 63 helical chains, leading to effective proton conduction primarily facilitated by an abundance of water molecules within the channels.

14.
Nanotechnology ; 35(30)2024 May 07.
Article in English | MEDLINE | ID: mdl-38631322

ABSTRACT

The growth kinetics of colloidal lead halide perovskite nanomaterials are an integral part of their applications, remains poorly understood due to complex nucleation processes and lack ofin situsize monitoring method. Here we demonstrated that absorption spectra can be used to observein situgrowth processes of ultrathin CsPbBr3nanowires in solution with reference to the effective mass infinite deep square potential well model. By means of this method, we have found that the ultrathin nanowires, fabricated by hot injection method, were firstly formed within one minute. Subsequently, they merge with each other into a thicker structure with increasing reaction time. We revealed that the nucleation, growth, and merging of the CsPbBr3nanowires are determined by the acid concentration and ligand chain length. At lower acidity, the critical nucleation size of the nanowire is smaller, while the shorter the ligand chain length, the faster the merging among the nanowires. Moreover, the merging mode between nanowires changed with their nucleation size. This growth kinetics of CsPbBr3nanowires provides a reference for optimizing the synthesis conditions to obtain the one-dimensional CsPbBr3with desired size, thus enabling accurate control of the nanowire shape.

15.
J Nat Prod ; 87(6): 1643-1651, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38848113

ABSTRACT

Five cyclopenta[d]pyrano[4,3-b]pyran-1,7(6H)-dione 6/6/5-fused tricyclic ring system containing metabolites peniapyrones A-E (1-5), and four previously undescribed cyclopenta[4,5]furo[3,2-c]pyran-1-one 6/5/5-fused tricyclic ring system containing compounds peniapyrones F-I (6-9), were isolated from the endophytic Penicillium brefeldianum F4a. Their structures, including absolute configurations, were determined through spectroscopic analysis and quantum chemical calculations. Peniapyrones D (4) and E (5) were a pair of diastereoisomers. Compounds 1, 3, and 5-9 showed cytotoxic activity against AsPC-1, CRL-2234, and MCF-7 cancer cell lines. Compounds 1, 3, 6, 8, and 9 inhibited the Kirsten rat sarcoma viral oncogene homologue (KRAS) mutant AsPC-1 cell line.


Subject(s)
Penicillium , Pyrones , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Penicillium/chemistry , Humans , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Drug Screening Assays, Antitumor , Cell Line, Tumor
16.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670136

ABSTRACT

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Baroreflex , Blood Pressure , Mechanotransduction, Cellular/physiology , Desoxycorticosterone Acetate/pharmacology , Synaptic Transmission
17.
Int J Med Sci ; 21(13): 2544-2561, 2024.
Article in English | MEDLINE | ID: mdl-39439468

ABSTRACT

Circular RNAs (circRNAs) are now recognized as key regulators in the epigenetic control of genetic expression, being involved in a wide range of cellular activities such as proliferation, differentiation, and apoptosis. Their unique closed-loop structure endows them with stability and resistance to exonuclease degradation, making them not only key regulatory molecules within the cell but also promising biomarkers for disease diagnosis and prognosis, particularly in hematological malignancies. This review comprehensively explores the role of circRNAs in the pathogenesis, progression, and therapeutic resistance of common hematological malignancies. Furthermore, the review delves into the prognostic significance of circRNAs, underscoring their potential in predicting disease outcomes and treatment response. Given their extensive involvement in cancer biology, circRNAs present a frontier for novel therapeutic strategies.


Subject(s)
Biomarkers, Tumor , Hematologic Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Biomarkers, Tumor/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Epigenesis, Genetic
18.
Int J Med Sci ; 21(5): 965-977, 2024.
Article in English | MEDLINE | ID: mdl-38616996

ABSTRACT

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Subject(s)
Aortic Valve Stenosis , Heart Failure , MicroRNAs , Animals , Mice , Cardiomegaly/genetics , Glucagon-Like Peptide 1 , MicroRNAs/genetics , Cystathionine gamma-Lyase
19.
BMC Med Imaging ; 24(1): 275, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394589

ABSTRACT

Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively simple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately determining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the experience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture information from pediatric thyroid ultrasound images while reducing the computational complexity and number of parameters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better segmentation performance with lower complexity in medical image segmentation. The results show that compared with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmentation accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge devices in clinical applications in the future.


Subject(s)
Thyroid Gland , Ultrasonography , Humans , Ultrasonography/methods , Thyroid Gland/diagnostic imaging , Child , Child, Preschool , Image Interpretation, Computer-Assisted/methods , Infant , Female , Neural Networks, Computer , Adolescent , Male , Algorithms
20.
BMC Nephrol ; 25(1): 10, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172696

ABSTRACT

BACKGROUND: Physical inactivity is prevalent among individuals with chronic kidney disease (CKD) and is linked to unfavorable outcomes. In recent years, daily steps have emerged as a prominent target for interventions in clinical trials. The present study endeavors to scrutinize the effectiveness and/or efficacy of various interventions on daily steps in patients with full-spectrum CKD. METHODS: In December 2022, a systematic search was conducted across three databases, namely PubMed, Embase, and Web of Science, and subsequently updated in June 2023. The inclusion criteria included randomized controlled studies, quasi-experimental studies, and single-arm trials that assessed an intervention's impact on objectively measured daily steps in patients with chronic kidney disease. The Risk Of Bias In Non-randomized Studies-of Interventions (ROBINS-I) tool was used to assess the risk of bias in non-randomized controlled trials (RCT), while the Cochrane revised tool (ROB-2) was utilized for RCTs. RESULTS: Seventeen studies were deemed eligible for inclusion in this review, with a focus on examining the efficacy and/or effectiveness of exercise training-based interventions (n = 10), daily step goal-oriented interventions (n = 4), mobile health (mHealth) interventions (n = 1), different dialysis modalities (n = 1), and a "Sit Less, Interact, Move More" intervention (n = 1). The studies exhibit variability in their characteristics and assessment tools, reflecting the findings' heterogeneity. The results indicate that increasing physical activity levels remain challenging, as only a limited number of studies demonstrated significant improvements in participants' daily step counts from baseline to endpoint. CONCLUSION: Clinical trials with daily steps as an outcome are still lacking in the CKD population. Well-designed clinical trials that objectively assess the physical activity of CKD patients are needed.


Subject(s)
Renal Dialysis , Renal Insufficiency, Chronic , Humans , Exercise , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Sedentary Behavior , Bias
SELECTION OF CITATIONS
SEARCH DETAIL