ABSTRACT
Sampled ticks were screened for Crimean-Congo haemorrhagic fever virus (CCHFV) using an assay that targets the nucleoprotein gene region of the S segment, a conserved region of the CCHFV genome. Minimum infection rates of 0.34% and 0.10% were obtained when testing pools of Hyalomma rufipes and Amblyomma variegatum, respectively. Next-generation sequencing and phylogenetic analysis showed that the S and L segments of the CCHFV isolate clustered with those of similar isolates of genotype III. However, analysis of the M segment showed that reassortment had occurred, causing this segment to cluster with those of isolates of genotype I, providing the first evidence of such an occurrence in Ghana.
Subject(s)
Amblyomma , Hemorrhagic Fever Virus, Crimean-Congo , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Ghana , Phylogeny , Biological AssayABSTRACT
Tick-borne pathogens harm livestock production and pose a significant risk to public health. To combat these effects, it is necessary to identify the circulating pathogens to create effective control measures. This study identified Anaplasma and Ehrlichia species in ticks collected from livestock in the Kassena-Nankana Districts between February 2020 and December 2020. A total of 1550 ticks were collected from cattle, sheep and goats. The ticks were morphologically identified, pooled and screened for pathogens using primers that amplify a 345 bp fragment of the 16SrRNA gene and Sanger sequencing. The predominant tick species collected was Amblyomma variegatum (62.98%). From the 491 tick pools screened, 34 (6.92%) were positive for Ehrlichia and Anaplasma. The pathogens identified were Ehrlichia canis (4.28%), Ehrlichia minasensis (1.63%), Anaplasma capra (0.81%) and Anaplasma marginale (0.20%). This study reports the first molecular identification of the above-mentioned Ehrlichia and Anaplasma species in ticks from Ghana. With the association of human infections with the zoonotic pathogen A. capra, livestock owners are at risk of infections, calling for the development of effective control measures.
Subject(s)
Ticks , Animals , Cattle , Sheep , Humans , Livestock , Ghana , Ehrlichia/genetics , Anaplasma/genetics , GoatsABSTRACT
Ticks are efficient vectors for transmitting pathogens that negatively affect livestock production and pose a risk to public health. In this study, Babesia and Theileria species were identified in ticks collected from cattle, sheep and goats from the Kassena-Nankana Districts of Ghana between February and December 2020. A total of 1550 ticks were collected, morphologically identified, pooled and screened for pathogens using primers that amplify a 560 bp fragment of the ssrRNA gene and Sanger sequencing. Amblyomma variegatum (62.98%) was the predominant tick species. From the 491 tick pools screened, 12/15 (2.44%) positive pools were successfully sequenced. The pathogen DNA identified were Theileria ovis in eight (15.38%) pools of Rhipicephalus evertsi evertsi, Theileria velifera in two (0.78%) pools of A. variegatum and Babesia occultans and Babesia sp. Xinjiang in one (1.72%) pool each of Hyalomma truncatum. It was further observed that T. ovis occurred in ticks collected from only sheep (p < 0.001) which were females (p = 0.023) and < =1 year old (p = 0.040). This study reports the first identification of these pathogens in ticks within Kassena-Nankana. With the constant trade of livestock, there is a need for effective tick control measures to prevent infection spread.
Subject(s)
Babesia , Cattle Diseases , Parasites , Rhipicephalus , Theileria , Female , Animals , Cattle , Sheep , Male , Ghana , Cattle Diseases/parasitologyABSTRACT
Ticks are a public health threat due to their tendency to spread pathogens that affect humans and animals. With reports of Rhipicephalus (Boophilus) microplus invasion in neighbouring countries, there is the risk of this species invading Ghana through livestock trade. Previous identification of tick species in Ghana has been based on morphological identification, which can be ineffective, especially with damaged tick specimens or engorged nymphs. This study focused on the Kassena-Nankana District, which serves as a trade route for cattle into Ghana, to determine the presence of R. microplus. Three genera of ticks were identified as Amblyomma (70.9%), Hyalomma (21.3%) and Rhipicephalus (7.8%). The engorged nymphs that could not be identified morphologically were analyzed using primers that target the mitochondrial 16S rRNA gene. This study reports the first record of R. (B.) microplus in Ghana. Furthermore, R. microplus constituted 54.8% of the Boophilus species collected in this study. This finding is an addition to the diverse tick species previously collected in Ghana, most of which are of veterinary and public health importance. With reports of acaricide resistance in R. microplus and its role in spreading infectious pathogens, the detection of this species in Ghana cannot be overlooked. Nationwide surveillance will be essential to ascertain its distribution, its effects on cattle production, and the control measures adopted.
Subject(s)
Cattle Diseases , Rhipicephalus , Tick Infestations , Cattle , Cattle Diseases/parasitology , Ghana , Phylogeny , Rhipicephalus/classification , Rhipicephalus/physiology , Tick Infestations/parasitology , Tick Infestations/prevention & control , AnimalsABSTRACT
Ticks are arthropods of veterinary and medical importance which spread zoonotic pathogens that link animal and human health. In this study, ticks were collected from 448 livestock between February and December 2020 in the Kassena-Nankana Districts of Ghana and screened for the presence of zoonotic pathogens DNA using PCR and sequencing approaches. In total, 1550 ticks were collected and morphologically identified. Three tick genera were identified with Amblyomma variegatum (63%) as the predominant tick species collected. DNA was extracted from 491 tick pools and screened for the presence of DNA of Rickettsia spp. based on the 115 bp fragment of the 17 kDa surface protein and 639 bp of the Outer membrane protein A (ompA) gene and the 295 bp fragment of the transposase gene of Coxiella burnetii IS1111a element. From the 491 pools screened, the DNA of Rickettsia spp. and C. burnetii was detected in 56.8 and 3.7%, respectively. Coinfections were identified in 2.4% of the tick pools. Characterization of the Rickettsia spp. in this study based on the ompA gene showed that the DNA of Rickettsia africae and Rickettsia aeschlimannii accounted for 39.7 and 14.7%, respectively, and were 100% similar to sequences in GenBank. Most R. africae and C. burnetii infections occurred in ticks collected in the wet season, whereas R. aeschlimannii occurred mostly in the dry season. These pathogens are potential public health threats, thus there is a need to implement control measures to reduce the risk of infections in vulnerable populations.
Subject(s)
Coxiella burnetii , Ixodidae , Rickettsia , Ticks , Animals , Humans , Coxiella burnetii/genetics , Ghana/epidemiology , Rickettsia/genetics , Ixodidae/microbiologyABSTRACT
Modified landscapes could create breeding habitats for mosquitoes and affect their community structure and susceptibility with implications for their management. Hence, in this study, household mosquito control methods in two urbanized landscapes; industrial and residential human settlements, in Ghana and insecticide susceptibility of the inhabiting Anopheles populations were assessed. Household knowledge and usage pattern of mosquito control methods in the modified landscapes were obtained using a questionnaire. Female adult Anopheles mosquitoes were also subjected to susceptibility tests using mosquito coils (0.08% meperfluthrin, 0.03% dimefluthrin, and 0.3% transfluthrin) and World Health Organization (WHO) insecticide test papers (0.05% deltamethrin, 4% DDT, 0.1% bendiocarb, 0.25% pirimiphos-methyl, and 5% malathion). Although insecticide-treated nets and aerosols were used for mosquito control, mosquito coils were the most common and widely preferred household method. The Anopheles mosquitoes were resistant to all the insecticides (mosquito coils and WHO test papers) except pirimiphos-methyl. Land use type did not affect insecticide resistance, but the insecticide type did. The findings indicate the effect of household insecticide usage practices on local mosquito populations and their implications for effective vector management and disease control in modified landscapes.
ABSTRACT
Tick-borne pathogens continue to infect humans and animals worldwide. By adapting to the movement of livestock, ticks facilitate the spread of these infectious pathogens. Humans in close contact with animals that could be amplifying hosts are especially at risk of being infected with tick-borne pathogens. This study involved the collection of dry blood spots (DBSs) to determine tick-borne pathogens occurring in slaughtered livestock and abattoir workers in Kumasi. This study employed the use of conventional PCR, RT-PCR, and Sanger sequencing to detect and identify the tick-borne pathogens. The resulting data was analysed using Stata version 13. A total of 175 DBSs were collected from goats (76), cattle (54), and sheep (45) in the Kumasi abattoir (130, 74.29%) and Akwatia Line slaughter slab (45, 25.71%). The pathogens identified were mostly bacterial including Anaplasma capra (9.71%), Anaplasma phagocytophilum (1.14%), and Rickettsia aeschlimannii (0.57.%). The only parasite identified was Theileria ovis (9.14%). A significant association was seen between A. capra (p < 0.001) infection and female sheep sampled from the Akwatia Line slaughter slab. Again, there was a significant association between T. ovis (p < 0.001) infections and female sheep from the Kumasi abattoir. From the human DBS (63) screened, the pathogens identified were all bacterial including Coxiella burnetii (1.89%), Rickettsia africae (1.89%), and R. aeschlimannii (1.89%). This study reports the first detection of R. aeschlimannii in livestock as well as the occurrence of the above-mentioned pathogens in humans in Ghana. Animals can serve as amplifying hosts for infectious pathogens; hence, there is an increased risk of infections among the abattoir workers. Continuous surveillance effort is essential, and abattoir workers need to protect themselves from tick bites and infectious tick-borne pathogens.
Subject(s)
Abattoirs , Tick-Borne Diseases , Zoonoses , Animals , Humans , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/epidemiology , Sheep/parasitology , Cattle , Zoonoses/parasitology , Zoonoses/microbiology , Ticks/microbiology , Ticks/parasitology , Goats/parasitology , Goats/microbiology , Female , Male , Livestock/parasitology , Livestock/microbiology , Rickettsia/genetics , Rickettsia/isolation & purification , Rickettsia/pathogenicityABSTRACT
BACKGROUND: Malaria remains a public health challenge in endemic countries of the world. The use of Long-lasting Insecticidal Nets (LLINs) is one of the major ways of malaria vector control. Recent evidence however suggests some LLINs are unable to maintain their effectiveness over their useful life span. This study assessed the bio-efficacy, physical integrity, use and attrition at 6 and 12-months post-distribution of LLINs (LifeNet). METHODS: Following a mass distribution of LLINs in the West Mamprusi District of the North-East region of Ghana in 2018, a total of 147 LLINs were sampled for physical integrity and attrition assessment using hole size and the number of holes as a measure of the proportionate hole index (pHI). Bioassays were conducted on sixty randomly selected LLINs using the WHO guidelines for bio-efficacy testing (cone tests), (20 each at baseline, midline and endline) over a one-year study period. Bed net ownership and use as well as malaria vector resistance status were also assessed. RESULTS: Findings indicate high bio-efficacy of approximately 100% average mortalities of mosquitoes at baseline, 6-months and 12-months post-distribution. A small proportion of LLINs (0.8% and 5.6% at the 6 and 12-months surveys respectively) were damaged beyond maintenance while 62.4% and 62.7% of LLINs were used the night before the survey for 6 and 12-months post-distribution respectively. Households with electricity were less likely to use LLINs compared to those without electricity (P-value = 0.016, OR = 0.39). There were 20 fewer LLINs recovered at the 12-months relative to the 6-months resulting in 14.3% attrition rate. Susceptibility testing showed high pyrethroid and organochlorine resistance (18%, 67.5% and 3.8%) to local malaria vectors respectively), whereas organophosphates and carbamates recorded vector susceptibility of 100% for pirimiphos-methyl and 98.7% for bendiocarb. CONCLUSION: Biological efficacy, physical integrity and net attrition during the study period were in conformity with respect to the WHOPES one year net use. LLINs remained effective after one-year of usage. Net ownership was high in the study households. There should be continuous and regular distribution campaigns to maintain high coverage.