ABSTRACT
CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.
Subject(s)
Central Nervous System Diseases/genetics , Mutation, Missense , Nuclear Proteins/metabolism , Peripheral Nervous System Diseases/genetics , Phosphotransferases/metabolism , RNA, Transfer/metabolism , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Central Nervous System Diseases/pathology , Cerebrum/pathology , Child, Preschool , Endoribonucleases/metabolism , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred CBA , Microcephaly/genetics , Peripheral Nervous System Diseases/pathology , RNA, Transfer/genetics , RNA-Binding ProteinsABSTRACT
The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.
Subject(s)
Endocannabinoids , Nervous System Diseases , Humans , Child , Phenotype , Nervous System Diseases/genetics , Heterozygote , Syndrome , Mutant ProteinsABSTRACT
Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.
Subject(s)
Anxiety Disorders/pathology , Autism Spectrum Disorder/pathology , Codon, Nonsense , Exome Sequencing/methods , Membrane Proteins/metabolism , Memory Disorders/pathology , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology , Adolescent , Adult , Animals , Anxiety Disorders/etiology , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Female , Humans , Male , Membrane Proteins/genetics , Memory Disorders/etiology , Mice , Mice, Knockout , Motor Activity , Phenotype , Serine Endopeptidases/geneticsABSTRACT
The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.
Subject(s)
Exome Sequencing , Whole Genome Sequencing , Genetic Testing , Humans , Infant , Infant, NewbornABSTRACT
PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.
Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Brain/metabolism , Gene Expression Regulation , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Protein Domains , Exome SequencingABSTRACT
BACKGROUND: The shelterin complex is composed of six proteins that protect and regulate telomere length, including protection of telomeres 1 (POT1). Germline POT1 mutations are associated with an autosomal dominant familial cancer syndrome presenting with diverse malignancies, including glioma, angiosarcoma, colorectal cancer and melanoma. Although somatic POT1 mutations promote telomere elongation and genome instability in chronic lymphocytic leukaemia, the contribution of POT1 mutations to development of other sporadic cancers is largely unexplored. METHODS: We performed logistic regression, adjusted for tumour mutational burden, to identify associations between POT1 mutation frequency and tumour type in 62 368 tumours undergoing next-generation sequencing. RESULTS: A total of 1834 tumours harboured a non-benign mutation of POT1 (2.94%), of which 128 harboured a mutation previously reported to confer familial cancer risk in the setting of germline POT1 deficiency. Angiosarcoma was 11 times more likely than other tumours to harbour a POT1 mutation (p=1.4×10-20), and 65% of POT1-mutated angiosarcoma had >1 mutations in POT1. Malignant gliomas were 1.7 times less likely to harbour a POT1 mutation (p=1.2×10-3) than other tumour types. Colorectal cancer was 1.2 times less likely to harbour a POT1 mutation (p=0.012), while melanoma showed no differences in POT1 mutation frequency versus other tumours (p=0.67). CONCLUSIONS: These results confirm a role for shelterin dysfunction in angiosarcoma development but suggest that gliomas arising in the context of germline POT1 deficiency activate a telomere-lengthening mechanism that is uncommon in gliomagenesis.
Subject(s)
Genetic Predisposition to Disease , Neoplastic Syndromes, Hereditary/genetics , Telomere-Binding Proteins/genetics , Telomere/genetics , Adult , Aged , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Germ-Line Mutation/genetics , Glioma/genetics , Glioma/pathology , Hemangiosarcoma/genetics , Hemangiosarcoma/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplastic Syndromes, Hereditary/pathology , Shelterin ComplexABSTRACT
Extremely rare diseases are increasingly recognized due to wide-spread, inexpensive genomic sequencing. Understanding the incidence of rare disease is important for appreciating its health impact and allocating recourses for research. However, estimating incidence of rare disease is challenging because the individual contributory alleles are, themselves, extremely rare. We propose a new method to determine incidence of rare, severe, recessive disease in non-consanguineous populations that use known allele frequencies, estimate the combined allele frequency of observed alleles and estimate the number of causative alleles that are thus far unobserved in a disease cohort. Experiments on simulated and real data show that this approach is a feasible method to estimate the incidence of rare disease in European populations but due to several limitations in our ability to assess the full spectrum of pathogenic mutations serves as a useful tool to provide a lower threshold on disease incidence.
Subject(s)
Genes, Recessive , Genetic Predisposition to Disease , Mutation , Polymorphism, Single Nucleotide , Rare Diseases/epidemiology , Rare Diseases/genetics , Cohort Studies , Gene Frequency , Humans , Incidence , Models, Genetic , United States/epidemiologyABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.
Subject(s)
Intellectual Disability/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Urogenital Abnormalities/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Databases, Genetic , Disease Models, Animal , Exome/genetics , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/complications , Kidney/abnormalities , Kidney/embryology , Male , Nephrons/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Urinary Tract/embryology , Urinary Tract/metabolism , Exome Sequencing/methods , Xenopus laevis/genetics , Xenopus laevis/metabolism , Young Adult , Dyrk KinasesABSTRACT
OBJECTIVES: Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN: Retrospective cohort study. SETTING: Single-center PICU in a tertiary children's hospital. PATIENTS: Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS: Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS: A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS: This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.
Subject(s)
Genetic Diseases, Inborn/diagnosis , Whole Genome Sequencing , Adolescent , Child , Child, Preschool , Critical Illness/therapy , Female , Humans , Infant , Intensive Care Units, Pediatric/statistics & numerical data , Male , Precision Medicine/methods , Retrospective StudiesABSTRACT
Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 "known" disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome.
Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Language Development Disorders/genetics , Muscle Hypotonia/genetics , Sleep Apnea Syndromes/genetics , Child , Child, Preschool , Exome/genetics , Female , Humans , Infant , Male , Mutation , SyndromeABSTRACT
5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.
Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , DNA-Binding Proteins/genetics , Muscle Hypotonia/genetics , Seizures/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/genetics , Chromosome Mapping , Humans , Molecular Sequence Data , Mutation/genetics , Sequence Analysis, DNA , SyndromeABSTRACT
PURPOSE: To investigate the utility of whole-exome sequencing (WES) to define a molecular diagnosis for patients clinically diagnosed with congenital anomalies of kidney and urinary tract (CAKUT). METHODS: WES was performed in 62 families with CAKUT. WES data were analyzed for single-nucleotide variants (SNVs) in 35 known CAKUT genes, putatively deleterious sequence changes in new candidate genes, and potentially disease-associated copy-number variants (CNVs). RESULTS: In approximately 5% of families, pathogenic SNVs were identified in PAX2, HNF1B, and EYA1. Observed phenotypes in these families expand the current understanding about the role of these genes in CAKUT. Four pathogenic CNVs were also identified using two CNV detection tools. In addition, we found one deleterious de novo SNV in FOXP1 among the 62 families with CAKUT. The clinical database of the Baylor Miraca Genetics laboratory was queried and seven additional unrelated individuals with novel de novo SNVs in FOXP1 were identified. Six of these eight individuals with FOXP1 SNVs have syndromic urinary tract defects, implicating this gene in urinary tract development. CONCLUSION: We conclude that WES can be used to identify molecular etiology (SNVs, CNVs) in a subset of individuals with CAKUT. WES can also help identify novel CAKUT genes.Genet Med 19 4, 412-420.
Subject(s)
DNA Copy Number Variations , Exome Sequencing/methods , Genetic Predisposition to Disease/genetics , Urogenital Abnormalities/diagnosis , Vesico-Ureteral Reflux/diagnosis , Adolescent , Child , Child, Preschool , Female , Forkhead Transcription Factors/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , Infant , Intracellular Signaling Peptides and Proteins/genetics , Male , Nuclear Proteins/genetics , PAX2 Transcription Factor/genetics , Pedigree , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatases/genetics , Repressor Proteins/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Young AdultABSTRACT
OBJECTIVE: To interrogate the metabolic profile of five subjects from three families with rare, nonsense and missense mutations in SLC13A5 and Early Infantile Epileptic Encephalopathies (EIEE) characterized by severe, neonatal onset seizures, psychomotor retardation and global developmental delay. METHODS: Mass spectrometry of plasma, CSF and urine was used to identify consistently dysregulated analytes in our subjects. RESULTS: Distinctive elevations of citrate and dysregulation of citric acid cycle intermediates, supporting the hypothesis that loss of SLC13A5 function alters tricarboxylic acid cycle (TCA) metabolism and may disrupt metabolic compartmentation in the brain. SIGNIFICANCE: Our results indicate that analysis of plasma citrate and other TCA analytes in SLC13A5 deficient patients define a diagnostic metabolic signature that can aid in diagnosing children with this disease.
Subject(s)
Citric Acid Cycle , Spasms, Infantile/metabolism , Symporters/deficiency , Symporters/genetics , Child , Citric Acid/blood , Female , Humans , Infant, Newborn , Male , Mass Spectrometry , Metabolome , Metabolomics/methods , Mutation , Mutation, Missense , Seizures/metabolism , Spasms, Infantile/diagnosis , Exome SequencingABSTRACT
BACKGROUND: Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. METHODS: We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. RESULTS: We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic phenotypes. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had autosomal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders. CONCLUSIONS: Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.).
Subject(s)
Exome , Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Genes, Dominant , Genes, Recessive , Genes, X-Linked , Genetic Diseases, Inborn/genetics , Humans , Mutation , Phenotype , Young AdultABSTRACT
We undertook a gene identification and molecular characterization project in a large kindred originally clinically diagnosed with SCA-X1. While presenting with ataxia, this kindred also had some unique peripheral nervous system features. The implicated region on the X chromosome was delineated using haplotyping. Large deletions and duplications were excluded by array comparative genomic hybridization. Exome sequencing was undertaken in two affected subjects. The single identified X chromosome candidate variant was then confirmed to co-segregate appropriately in all affected, carrier and unaffected family members by Sanger sequencing. The variant was confirmed to be novel by comparison with dbSNP, and filtering for a minor allele frequency of <1% in 1000 Genomes project, and was not present in the NHLBI Exome Sequencing Project or a local database at the BCM HGSC. Functional experiments on transfected cells were subsequently undertaken to assess the biological effect of the variant in vitro. The variant identified consisted of a previously unidentified non-synonymous variant, GJB1 p.P58S, in the Connexin 32/Gap Junction Beta 1 gene. Segregation studies with Sanger sequencing confirmed the presence of the variant in all affected individuals and one known carrier, and the absence of the variant in unaffected members. Functional studies confirmed that the p.P58S variant reduced the number and size of gap junction plaques, but the conductance of the gap junctions was unaffected. Two X-linked ataxias have been associated with genetic loci, with the first of these recently characterized at the molecular level. This represents the second kindred with molecular characterization of X-linked ataxia, and is the first instance of a previously unreported GJB1 mutation with a dominant and permanent ataxia phenotype, although different CNS deficits have previously been reported. This pedigree has also been relatively unique in its phenotype due to the presence of central and peripheral neural abnormalities. Other X-linked SCAs with unique features might therefore also potentially represent variable phenotypic expression of other known neurological entities.
Subject(s)
Connexins/genetics , Exome , Genes, X-Linked , Mutation, Missense , Spinocerebellar Ataxias/genetics , Base Sequence , Chromosomes, Human, X , Connexins/metabolism , Evolution, Molecular , Female , Genetic Testing , Genetic Variation , HeLa Cells , Humans , Male , Molecular Sequence Data , Pedigree , Phenotype , Phylogeny , Proline/genetics , Sequence Alignment , Sequence Analysis, DNA , Serine/genetics , Spinocerebellar Ataxias/diagnosis , Gap Junction beta-1 ProteinABSTRACT
Genitopatellar syndrome (GPS) is a skeletal dysplasia with cerebral and genital anomalies for which the molecular basis has not yet been determined. By exome sequencing, we found de novo heterozygous truncating mutations in KAT6B (lysine acetyltransferase 6B, formerly known as MYST4 and MORF) in three subjects; then by Sanger sequencing of KAT6B, we found similar mutations in three additional subjects. The mutant transcripts do not undergo nonsense-mediated decay in cells from subjects with GPS. In addition, human pathological analyses and mouse expression studies point to systemic roles of KAT6B in controlling organismal growth and development. Myst4 (the mouse orthologous gene) is expressed in mouse tissues corresponding to those affected by GPS. Phenotypic differences and similarities between GPS, the Say-Barber-Biesecker variant of Ohdo syndrome (caused by different mutations of KAT6B), and Rubinstein-Taybi syndrome (caused by mutations in other histone acetyltransferases) are discussed. Together, the data support an epigenetic dysregulation of the limb, brain, and genital developmental programs.
Subject(s)
Histone Acetyltransferases/genetics , Musculoskeletal Abnormalities/genetics , Mutation , Urogenital Abnormalities/genetics , Abnormalities, Multiple/enzymology , Abnormalities, Multiple/genetics , Animals , Blepharophimosis/enzymology , Blepharophimosis/genetics , Blepharoptosis/enzymology , Blepharoptosis/genetics , Bone Diseases, Developmental/enzymology , Bone Diseases, Developmental/genetics , Cerebellum/abnormalities , Epigenomics/methods , Exome , Female , Heart Defects, Congenital/enzymology , Heart Defects, Congenital/genetics , Heterozygote , Humans , Intellectual Disability/enzymology , Intellectual Disability/genetics , Male , Mice , Mice, Inbred C57BL , Musculoskeletal Abnormalities/enzymology , Phenotype , Rubinstein-Taybi Syndrome/enzymology , Rubinstein-Taybi Syndrome/genetics , Sequence Analysis, DNA/methods , Urogenital Abnormalities/enzymologySubject(s)
Primary Myelofibrosis/genetics , Vesicular Transport Proteins/deficiency , Abnormalities, Multiple/genetics , Bone Marrow Transplantation , Child , Consanguinity , Fatal Outcome , Female , Gonadal Dysgenesis, 46,XY/genetics , Hematopoietic Stem Cell Transplantation , Humans , Infant , Intellectual Disability/genetics , Male , Pedigree , Phenotype , Primary Myelofibrosis/congenital , Primary Myelofibrosis/therapy , Syndrome , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/physiologyABSTRACT
The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.
Subject(s)
Brain Neoplasms/epidemiology , Austria , HumansABSTRACT
Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.