Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Funct Integr Genomics ; 23(3): 242, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37453957

ABSTRACT

Potato cyst nematodes (PCNs) are major pests worldwide that affect potato production. The molecular changes happening in the roots upon PCN infection are still unknown. Identification of transcripts and genes governing PCN resistance will help in the development of resistant varieties. Hence, differential gene expression of compatible (Kufri Jyoti) and incompatible (JEX/A-267) potato genotypes was studied before (0 DAI) and after (10 DAI) inoculation of Globodera rostochiensis J2s through RNA sequencing (RNA-Seq). Total sequencing reads generated ranged between 33 and 37 million per sample, with a read mapping of 48-84% to the potato reference genome. In the infected roots of the resistant genotype JEX/A-267, 516 genes were downregulated, and 566 were upregulated. In comparison, in the susceptible genotype Kufri Jyoti, 316 and 554 genes were downregulated and upregulated, respectively. Genes encoding cell wall proteins, zinc finger protein, WRKY transcription factors, MYB transcription factors, disease resistance proteins, and pathogenesis-related proteins were found to be majorly involved in the incompatible reaction after PCN infection in the resistant genotype, JEX/A-267. Furthermore, RNA-Seq results were validated through quantitative real-time PCR (qRT-PCR), and it was observed that ATP, FLAVO, CYTO, and GP genes were upregulated at 5 DAI, which was subsequently downregulated at 10 DAI. The genes encoding ATP, FLAVO, LBR, and GP were present in > 1.5 fold before infection in JEX-A/267 and upregulated 7.9- to 27.6-fold after 5 DAI; subsequently, most of these genes were downregulated to 0.9- to 2.8-fold, except LBR, which was again upregulated to 44.4-fold at 10 DAI.


Subject(s)
Solanum tuberosum , Tylenchoidea , Animals , Solanum tuberosum/genetics , Gene Expression Profiling/methods , Transcription Factors/genetics , Adenosine Triphosphate
2.
Curr Microbiol ; 80(4): 125, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36872375

ABSTRACT

The potato cyst nematode (Globodera rostochiensis) is one of the most economically important pests of potato (Solanum tuberosum L.), causing significant economic losses worldwide. The identification of biocontrol agents for the sustainable management of G. rostochiensis is crucial. In this study, a potential biocontrol agent, Chaetomium globosum KPC3, was identified based on sequence analysis of the DNA internal transcribed spacer (ITS) region, the translation elongation factor 1-alpha (TEF1-α) gene, and the second largest subunit of the RNA polymerase II (RPB2) gene. The pathogenicity test of C. globosum KPC3 against cysts and second-stage juveniles (J2s) revealed that fungus mycelium fully parasitized the cyst after 72 h of incubation. The fungus was also capable of parasitizing the eggs inside the cysts. The culture filtrate of C. globosum KPC3 caused 98.75% mortality in J2s of G. rostochiensis after 72 h of incubation. The pot experiments showed that the combined application of C. globosum KPC3 as a tuber treatment at a rate of 1 lit kg-1 of tubers and a soil application at a rate of 500 ml kg-1 of farm yard manure (FYM) resulted in significantly lesser reproduction of G. rostochiensis compared to the rest of the treatments. Altogether, C. globosum KPC3 has the potential to be used as a biocontrol agent against G. rostochiensis and can be successfully implemented in integrated pest management programs.


Subject(s)
Chaetomium , Cysts , Nematoda , Solanum tuberosum , Animals
3.
Protoplasma ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607379

ABSTRACT

Globodera pallida, an obligate sedentary endoparasite, is a major economic pest that causes substantial potato yield losses. This research aimed to study the effects of gene silencing of three FMRFamide-like peptides (FLPs) genes to reduce G. pallida infestation on potato plants by using kaolinite nanoclay as a carrier to deliver dsRNAs via drenching. A dsRNA dosage of 2.0 mg/ml silenced flp-32c by 89.5%, flp-32p by 94.6%, and flp-2 by 94.3%. J2s incubated for 5 and 10 h showed no phenotypic changes. However, J2s of G. pallida efficiently uptake dsRNA of all targeted genes after 15 h of incubation. On the other hand, J2s that had been kept for 24 h had a rigid and straight appearance. Under fluorescence microscopy, all dsRNA-treated nematodes showed fluorescein isothiocyanate (FITC) signals in the mouth, nervous system, and digestive system. The untreated population of J2s did not show any FITC signals and was mobile as usual. The drenching of potato cultivar Kufri Jyoti with the dsRNA-kaolinite formulations induced deformation and premature death of J2s, compared with untreated J2s that entered J3 or J4 stages. This study validates that the nanocarrier-delivered RNAi system could be employed effectively to manage G. pallida infestations.

4.
Protoplasma ; 260(4): 1031-1046, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36752884

ABSTRACT

Chitin, the world's second most abundant biopolymer after cellulose, is composed of ß-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.


Subject(s)
Chitinases , Animals , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Chitin/chemistry , Chitin/metabolism
5.
3 Biotech ; 13(5): 123, 2023 May.
Article in English | MEDLINE | ID: mdl-37033385

ABSTRACT

Potato cyst nematodes, Globodera pallida and G. rostochiensis, are economically important and difficult to manage pests of the potato crop. The cyst of both the species looks similar and it is difficult to differentiate once it turns brown upon maturity. Early detection of the PCN at the species level is crucial to avoid its further spread and for adopting the appropriate management strategies. Therefore, in the present study, highly specific and sensitive loop-mediated isothermal amplification (LAMP) assay was developed to amplify mitochondrial-Sequence Characterized Amplified Region (SCAR) sequence of potato cyst nematode, G. pallida. The LAMP assay was completed within a shorter incubation period of 60 min at 60 °C followed by the reaction termination at 80 °C for 5 min. The developed LAMP assay exhibited high specificity for G. pallida and did not detect any other species including its sibling species, G. rostochiensis. In sensitivity tests, the assay detected G. pallida at 1000 times less DNA concentration (10 fg/µl) as compared to conventional PCR (10 pg/µl). In addition to this, the developed LAMP assay was tested for the detection of G. pallida directly from the soil samples, and even a single cyst mixed with soil was successfully detected by the developed assay. Moreover, the utility of low-cost instruments like hot water bath was also demonstrated for the detection of G. pallida from the soil. The developed LAMP is a rapid, highly specific, sensitive, and cost-effective technique for the species-specific detection of G. pallida. The developed assay will facilitate the rapid detection of G. pallida at quarantine stations as well as from the fields which will help to stop its further spread in new areas and also to devise effective management strategies for sustainable potato production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03542-x.

6.
Front Plant Sci ; 14: 1211472, 2023.
Article in English | MEDLINE | ID: mdl-37860256

ABSTRACT

Potatoes are an important source of food for millions of people worldwide. Biotic stresses, notably late blight and potato cyst nematodes (PCN) pose a major threat to potato production worldwide, and knowledge of genes controlling these traits is limited. A genome-wide association mapping study was conducted to identify the genomic regulators controlling these biotic stresses, and the genomic prediction accuracy was worked out using the GBLUP model of genomic selection (GS) in a panel of 222 diverse potato accessions. The phenotype data on resistance to late blight and two PCN species (Globodera pallida and G. rostochiensis) were recorded for three and two consecutive years, respectively. The potato panel was genotyped using genotyping by sequencing (GBS), and 1,20,622 SNP markers were identified. A total of 7 SNP associations for late blight resistance, 9 and 11 for G. pallida and G. rostochiensis, respectively, were detected by additive and simplex dominance models of GWAS. The associated SNPs were distributed across the chromosomes, but most of the associations were found on chromosomes 5, 10 and 11, which have been earlier reported as the hotspots of disease-resistance genes. The GS prediction accuracy estimates were low to moderate for resistance to G. pallida (0.04-0.14) and G. rostochiensis (0.14-0.21), while late blight resistance showed a high prediction accuracy of 0.42-0.51. This study provides information on the complex genetic nature of these biotic stress traits in potatoes and putative SNP markers for resistance breeding.

7.
Pest Manag Sci ; 78(9): 3746-3759, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35638382

ABSTRACT

Potato cyst nematodes (PCNs; Globodera spp.) are one of the most difficult pests of potato to manage worldwide. Indiscriminate use of pesticides and their hazardous effects discourage the use of many chemicals for the management of PCNs. As a result, biological control agents and trap crops have received more attention from growers as safer ways to manage PCNs. The biological control agents such as Pochonia chlamydosporia, Purpureocillium lilacinum, Trichoderma spp., Pseudomonas fluorescens, Bacillus spp., Pasteuria spp., and others are recognized as potential candidates for the management of PCNs. Moreover recently, the use of trap crop Solanum sisymbriifolium also showed promise by drastically reducing soil populations of PCNs. Integration of these management strategies along with other practices including identification, conservation, and multiplication of native antagonists, will facilitate efficient management of the PCNs in potato cropping system. Some of the promising research approaches that are being used against PCNs are addressed in this review. © 2022 Society of Chemical Industry.


Subject(s)
Solanum tuberosum , Trichoderma , Tylenchoidea , Animals , Biological Control Agents , Soil
8.
Methods Mol Biol ; 2408: 211-226, 2022.
Article in English | MEDLINE | ID: mdl-35325425

ABSTRACT

Double-stranded RNA (dsRNAs) molecules are the precursors and effective triggers of RNAi in most organisms. RNAi can be induced by the direct introduction of dsRNAs in plants, fungi, insects, and nematodes. Until now RNAi is usually established by transformation of the plant with a construct that produces hairpin RNAs. Alternatively, advances in RNA biology demonstrated efficiently the in vitro method of large-scale synthesis of dsRNA molecule. Here we describe the de novo synthesis of dsRNA molecule targeting the specific gene of interest for functional application. Selection of off-target effective siRNA regions, flanking of T7 promoter sequences, T7 polymerase reaction, and maintenance of the stability of dsRNA molecules are the main criteria of this method to obtain pure and effective yield for functional applications. IPTG (isopropyl-ß-D-thiogalactopyranoside) induced, T7 express E. coli cells, could be used for large scale synthesis of dsRNA molecule are also described in this method.


Subject(s)
Escherichia coli , RNA, Double-Stranded , Escherichia coli/genetics , Plants/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering
9.
Pest Manag Sci ; 78(7): 3183-3192, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35478320

ABSTRACT

BACKGROUND: Phytophthora infestans is a late blight-causing oomycetes pathogen. It rapidly evolves and adapts to the host background and new fungicide molecules within a few years of their release, most likely because of the predominance of transposable elements in its genome. Frequent applications of fungicides cause environmental concerns. Here, we developed target-specific RNA interference (RNAi)-based molecules, along with nanoclay carriers, that when sprayed on plants are capable of effectively reducing late blight infection. RESULTS: Targeted the genes unique to sporulation, early satge infection and the metabolism pathway stages based on in an our own microarray data. We used nanoclay as a carrier for sorbitol dehydrogenase, heat shock protein 90, translation elongation factor 1-α, phospholipase-D like 3 and glycosylphosphatidylinositol-anchored acidic serine-threonine-rich HAM34-like protein double-stranded (ds)RNAs, which were assessed by culture bioassay, detached leaf assay and spray methods, and revealed a reduction in growth, sporulation and symptom expression. Plants sprayed with multigene targeted dsRNA-nanoclay showed enhanced disease resistance (4% disease severity) and less sporulation (<1 × 103 ) compared with plants sprayed with dsRNA alone. CONCLUSION: The use of nanoclay with multigene targeted dsRNA was assumed to be involved in effective delivery, protection and boosting the action of RNAi as a spray-induced gene silencing approach (SIGS). A significant reduction in growth, sporulation, disease severity and decreased gene expression authenticates the effects of SIGS on late blight progression. This study demonstrated as a proof of concept the dsRNA-nanoclay SIGS approach, which could be used as an alternative to chemical fungicides and transgenic approaches to develop an environmentally friendly novel plant protection strategy for late blight. © 2022 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Solanum tuberosum , Disease Resistance/genetics , Fungicides, Industrial/pharmacology , Phytophthora infestans/genetics , Plant Diseases/prevention & control , RNA, Double-Stranded/genetics , Solanum tuberosum/genetics
10.
Life (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36675982

ABSTRACT

The potato originated in southern Peru and north-western Bolivia (South America). However, native accessions have also been cultivated in India for many years. Late blight, caused by the fungus Phytophthora infestans, is the most devastating potato disease, while potato cyst nematode (Globodera spp.) (PCN) is another economically significant quarantine-requiring pest in India. In this study, we have generated a new Indian native collection of 94 potato accessions collected from different parts India. These accessions were screened against late blight and potato cyst nematode resistance by using gene-based molecular markers and phenotypic screening methods. Marker assisted selection using R1 gene-specific marker CosA210 revealed a late blight resistance gene in 11 accessions. PCN resistance bands were found in 3 accessions with marker TG689141, 5 accessions with marker 57R452, and 1 accession having Gro1-4-1602 marker for G. rostochiensis (Ro1,4), while 64 accessions amplified marker HC276 indicating G. pallida (Pa2,3) resistance gene (GpaVvrn QTL). On the other hand, phenotypic screening against late blight resistance under natural epiphytic conditions (hot-spot) revealed three accessions with high resistance, while others were resistant (1 accession), moderately resistant (5 accessions), susceptible (29 accessions), and highly susceptible (56 accessions). For G. rostochiensis (golden cyst nematode) and G. pallida (white cyst nematode) resistance, accessions were grouped into highly resistant (3, 3), resistant (0, 2), moderately resistant (6, 29), susceptible (32, 30), and highly susceptible (53, 30), respectively, for the two PCN species. Collectively, we identified promising accessions with high resistance to late blight (JG-1, Kanpuria Safed, and Rangpuria), and also highly resistant to both Globodera species (Garlentic, Jeevan Jyoti, and JG-1). Our findings suggested that these accessions would be useful for late blight and PCN resistance breeding, as well as future molecular studies in potatoes.

11.
3 Biotech ; 11(9): 421, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34603921

ABSTRACT

The whitefly, Bemisia tabaci (Gennadius), is responsible for significant yield losses in many crops, including potato, by sucking the phloem sap and transmitting a number of plant viruses. B. tabaci is a complex of cryptic species which is commonly designated as genetic groups. The B. tabaci genetic groups differ biologically with respect to host plant preference, insecticidal resistance, reproduction capacity, and ability to transmit begomoviruses. Therefore, understanding genetic variation among populations is important for establishing crop-specific distribution profile and management. We sequenced the mitochondrial cytochrome oxidase I (mtCOI) gene of B. tabaci collected from major potato growing areas of India. BLAST analysis of the 24 mtCOI sequences with reference Gene Bank sequences revealed four B. tabaci genetic groups prevailing in this region. mtCOI analysis exhibited the presence of Asia II 1, Asia II 5, Asia 1, and MEAM1 B. tabaci genetic groups. Our study highlighted that a new genetic group Asia II 5 has been detected in Indo-Gangetic Plains. Further virus-vector relationship study of ToLCNDV with Asia II 5 B. tabaci revealed that females are efficient vector of this virus as compared to males. This behavior of females might be due to their ability to acquire more virus titer than males. This study will help in better understanding of whitefly genetic group mediated virus diseases.

12.
J Parasit Dis ; 41(3): 607-620, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28848248

ABSTRACT

Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida. Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.

13.
J Parasit Dis ; 40(2): 240-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27413286

ABSTRACT

Estimation of avoidable loss in yield of bidi tobacco due to reniform nematode under pot conditions revealed that variety A 119 suffered heavily than ABT 10 due to reniform nematode. Inoculation of reniform nematode @ 2000 J4 per plant significantly reduced the plant growth characters and increased nematode multiplication preferring A 119 variety. Estimation of avoidable loss in cured shoot yield of bidi tobacco due to infection of reniform nematode in individual variety ABT 10 and A 119 has been estimated to the tune of 30.5 and 34.2 per cent with overall loss 31.9 per cent in both the variety 60 DAI. Simply growing of ABT 10 variety irrespective of infection of reniform nematode avoided 29.5 per cent loss in cured shoot yield. ABT 10 recorded significantly high nicotine, reducing sugar and chloride than A 119; inoculation of reniform nematode significantly increased nicotine, reducing sugar and chloride compared to no inoculation. Interaction indicated that inoculation of 2000 J4 of reniform nematode significantly increased nicotine, reducing sugar and chloride in A 119 compared to no inoculation; while significantly reduced reducing sugar and increased chloride in ABT 10. There was no significant impact of infection of reniform nematode on nicotine in ABT 10.

14.
J Parasit Dis ; 40(3): 714-23, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27605772

ABSTRACT

Comparative pathogenicity of reniform nematode on root-knot resistant ABT 10 and susceptible bidi tobacco A119 revealed that ABT 10 was found significantly superior to A119 with respect to plant growth characters and as good as A119 with respect to multiplication of reniform nematode. Initial inoculum of 1,000 J4 of the nematode found damaging to both ABT 10 and A119 varieties of bidi tobacco.

SELECTION OF CITATIONS
SEARCH DETAIL