Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 592(7853): 302-308, 2021 04.
Article in English | MEDLINE | ID: mdl-33762732

ABSTRACT

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Clone Cells/metabolism , Clone Cells/pathology , Evolution, Molecular , Base Sequence , Cell Line, Tumor , Cell Lineage , Chromosome Aberrations , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Genomic Instability/genetics , Humans , Loss of Heterozygosity/genetics , Models, Genetic , Mutation Rate , Single Molecule Imaging , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
2.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717409

ABSTRACT

In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.


Subject(s)
Karyotype , Humans , Animals , Evolution, Molecular , Models, Genetic , Neoplasms/genetics , Biological Evolution
3.
Nat Cancer ; 5(2): 228-239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286829

ABSTRACT

Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.


Subject(s)
Chromosome Aberrations , Neoplasms , Humans , Neoplasms/genetics , Genome , Aneuploidy , Genomics
4.
Cancer Discov ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38943574

ABSTRACT

Tumors frequently display high chromosomal instability and contain multiple copies of genomic regions. Here, we describe GRITIC, a generic method for timing genomic gains leading to complex copy number states, using single-sample bulk whole-genome sequencing data. By applying GRITIC to 6,091 tumors, we found that non-parsimonious evolution is frequent in the formation of complex copy number states in genome-doubled tumors. We measured chromosomal instability before and after genome duplication in human tumors and found that late genome doubling was followed by an increase in the rate of copy number gain. Copy number gains often accumulate as punctuated bursts, commonly after genome doubling. We infer that genome duplications typically affect the landscape of copy number losses, while only minimally impacting copy number gains. In summary, GRITIC is a novel copy number gain timing framework that permits the analysis of copy number evolution in chromosomally unstable tumors.

5.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517886

ABSTRACT

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Subject(s)
Breast Neoplasms , Gene Regulatory Networks , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Chromosomes, Human, Pair 4/genetics , Cell Proliferation/genetics , Chromosome Aberrations , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
Genome Med ; 14(1): 99, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042521

ABSTRACT

BACKGROUND: Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS: In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS: IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS: Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Adult , Aged , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Models, Genetic , Mutation , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL