Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38471013

ABSTRACT

RATIONALE: BMI is associated with COPD mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate causal mechanisms and predict risk. OBJECTIVES: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. METHODS: We developed a polygenic score for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene, ECLIPSE, and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff < 20th percentile), concordant (BMIdiff between 20th - 80th percentile), and discordantly high (BMIdiff > 80th percentile) BMI. We applied Cox models, examined potential non-linear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. MEASUREMENTS AND MAIN RESULTS: We observed significant non-linear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (HR=1.29, 95% CI=1.12-1.49), but not with respiratory or all-cause mortality. Compared to participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher mortality risk for all-cause (HR=1.57, CI=1.41-1.74) and respiratory death (HR=2.01, CI=1.61-2.51). CONCLUSIONS: In people with COPD, higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with discordantly low BMI have higher all-cause and respiratory mortality compared to those with concordant BMI.

2.
J Allergy Clin Immunol ; 152(6): 1423-1432, 2023 12.
Article in English | MEDLINE | ID: mdl-37595761

ABSTRACT

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Child , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/epidemiology , Asthma/genetics , Vital Capacity , Respiratory Function Tests , Forced Expiratory Volume
3.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Article in English | MEDLINE | ID: mdl-36918039

ABSTRACT

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Subject(s)
Asthma , Sputum , Humans , Sputum/metabolism , Lipidomics , Proteomics/methods , Cross-Sectional Studies , Prospective Studies , Lipids
4.
Respir Res ; 24(1): 38, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726148

ABSTRACT

BACKGROUND: The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. METHODS: Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case-control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. RESULTS: Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC ([Formula: see text] 0.020, SE 0.004, p 4.97 × 10-08), with suggestive evidence of association with FEV1 ([Formula: see text] 0.092, SE 0.018, p 3.40 × 10-07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. CONCLUSIONS: This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Female , Male , Humans , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Phenotype , X Chromosome
5.
Brain Behav Immun ; 111: 249-258, 2023 07.
Article in English | MEDLINE | ID: mdl-37146653

ABSTRACT

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Subject(s)
Asthma , Interleukin-6 , Humans , Asthma/complications , Anxiety , Comorbidity , Inflammation/complications , Biomarkers
6.
J Allergy Clin Immunol ; 149(1): 89-101, 2022 01.
Article in English | MEDLINE | ID: mdl-33891981

ABSTRACT

BACKGROUND: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Dermatitis, Atopic/drug therapy , Dermatologic Agents/therapeutic use , Interleukins/antagonists & inhibitors , Adult , Aged , Asthma/genetics , Asthma/immunology , Bronchi/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Female , Humans , Immunoglobulin E/blood , Interleukins/genetics , Interleukins/immunology , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology , Proteome/drug effects , Severity of Illness Index , Skin/immunology , Sputum/immunology , Transcriptome/drug effects , Treatment Outcome , Interleukin-22
7.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34737220

ABSTRACT

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Subject(s)
Asthma , Quality of Life , Blood Proteins , Humans , Inflammation/metabolism , Proteomics , Severity of Illness Index , Steroids/therapeutic use
8.
Eur Respir J ; 59(6)2022 06.
Article in English | MEDLINE | ID: mdl-34824054

ABSTRACT

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/genetics , Carnitine/therapeutic use , Cross-Sectional Studies , Humans , Severity of Illness Index , Solute Carrier Family 22 Member 5
9.
Eur Respir J ; 59(5)2022 05.
Article in English | MEDLINE | ID: mdl-34649975

ABSTRACT

Clinical trials evaluating the management of acute exacerbations of COPD assess heterogeneous outcomes, often omitting those that are clinically relevant or more important to patients. We have developed a core outcome set, a consensus-based minimum set of important outcomes that we recommend are evaluated in all future clinical trials on exacerbations management, to improve their quality and comparability. COPD exacerbations outcomes were identified through methodological systematic reviews and qualitative interviews with 86 patients from 11 countries globally. The most critical outcomes were prioritised for inclusion in the core outcome set through a two-round Delphi survey completed by 1063 participants (256 patients, 488 health professionals and 319 clinical academics) from 88 countries in five continents. Two global, multi-stakeholder, virtual consensus meetings were conducted to 1) finalise the core outcome set and 2) prioritise a single measurement instrument to be used for evaluating each of the prioritised outcomes. Consensus was informed by rigorous methodological systematic reviews. The views of patients with COPD were accounted for at all stages of the project. Survival, treatment success, breathlessness, quality of life, activities of daily living, the need for a higher level of care, arterial blood gases, disease progression, future exacerbations and hospital admissions, treatment safety and adherence were all included in the core outcome set. Focused methodological research was recommended to further validate and optimise some of the selected measurement instruments. The panel did not consider the prioritised set of outcomes and associated measurement instruments to be burdensome for patients and health professionals to use.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Activities of Daily Living , Delphi Technique , Humans , Pulmonary Disease, Chronic Obstructive/therapy , Research Design , Treatment Outcome
10.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32667261

ABSTRACT

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Subject(s)
Asthma/metabolism , Biomarkers/urine , Inflammation/metabolism , Leukotriene E4/metabolism , Leukotriene E4/urine , Prostaglandins/metabolism , Prostaglandins/urine , Adult , Asthma/physiopathology , Female , Humans , Inflammation/physiopathology , Male , Middle Aged
11.
Eur Respir J ; 57(3)2021 03.
Article in English | MEDLINE | ID: mdl-33303557

ABSTRACT

RATIONALE: There are no validated measures of disease activity in COPD. Since "active" disease is expected to have worse outcomes (e.g. mortality), we explored potential markers of disease activity in patients enrolled in the ECLIPSE cohort in relation to 8-year all-cause mortality. METHODS: We investigated 1) how changes in relevant clinical variables over time (1 or 3 years) relate to 8-year mortality; 2) whether these variables inter-relate; and 3) if any clinical, imaging and/or biological marker measured cross-sectionally at baseline relates to any activity component. RESULTS: Results showed that 1) after 1 year, hospitalisation for COPD, exacerbation frequency, worsening of body mass index, airflow obstruction, dyspnoea and exercise (BODE) index or health status (St George's Respiratory Questionnaire (SGRQ)) and persistence of systemic inflammation were significantly associated with 8-year mortality; 2) at 3 years, the same markers, plus forced expiratory volume in 1 s (FEV1) decline and to a lesser degree computed tomography (CT) emphysema, showed association, thus qualifying as markers of disease activity; 3) changes in FEV1, inflammatory cytokines and CT emphysema were not inter-related, while the multidimensional indices (BODE and SGRQ) showed modest correlations; and 4) changes in these markers could not be predicted by any baseline cross-sectional measure. CONCLUSIONS: In COPD, 1- and 3-year changes in exacerbation frequency, systemic inflammation, BODE and SGRQ scores and FEV1 decline are independent markers of disease activity associated with 8-year all-cause mortality. These disease activity markers are generally independent and not predictable from baseline measurements.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Biomarkers , Cross-Sectional Studies , Forced Expiratory Volume , Humans , Quality of Life , Respiratory Function Tests , Severity of Illness Index , Surveys and Questionnaires
12.
Respirology ; 26(4): 342-351, 2021 04.
Article in English | MEDLINE | ID: mdl-33164314

ABSTRACT

BACKGROUND AND OBJECTIVE: Activation of the blood coagulation system is a common observation in inflammatory diseases. The role of coagulation in COPD is underexplored. METHODS: The study included 413 COPD patients and 49 controls from the 3-year Bergen COPD Cohort Study (BCCS). One hundred and forty-eight COPD patients were also examined during AECOPD. The plasma markers of coagulation activation, TAT complex, APC-PCI complex and D-dimer, were measured at baseline and during exacerbations by enzyme immunoassays. Differences in levels of the markers between stable COPD patients and controls, and between stable COPD and AECOPD were examined. The associations between coagulation markers and later AECOPD and mortality were examined by negative binomial and Cox regression analyses. RESULTS: TAT was significantly lower in stable COPD (1.03 ng/mL (0.76-1.44)) than in controls (1.28 (1.04-1.49), P = 0.002). During AECOPD, all markers were higher than in the stable state: TAT 2.56 versus 1.43 ng/mL, APC-PCI 489.3 versus 416.4 ng/mL and D-dimer 763.5 versus 479.7 ng/mL (P < 0.001 for all). Higher D-dimer in stable COPD predicted a higher mortality (HR: 1.60 (1.24-2.05), P < 0.001). Higher TAT was associated with both an increased risk of later exacerbations, with a yearly incidence rate ratio of 1.19 (1.04-1.37), and a faster time to the first exacerbation (HR: 1.25 (1.10-1.42), P = 0.001, all after adjustment). CONCLUSION: Activation of the coagulation system is increased during COPD exacerbations. Coagulation markers are potential predictors of later COPD exacerbations and mortality.


Subject(s)
Percutaneous Coronary Intervention , Pulmonary Disease, Chronic Obstructive , Blood Coagulation , Cohort Studies , Disease Progression , Humans
13.
BMC Pulm Med ; 21(1): 342, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727907

ABSTRACT

OBJECTIVE: Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). METHODS: 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. RESULTS: A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. CONCLUSION: The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , Lung Diseases, Obstructive/microbiology , Microbiota , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage , Bronchoscopy , Classification , Humans , Lung Diseases, Obstructive/drug therapy , Male , Microbiota/drug effects , Middle Aged , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
COPD ; 17(6): 662-671, 2020 12.
Article in English | MEDLINE | ID: mdl-33164586

ABSTRACT

Six-minute walk test (6MWT) measures walking distance (6MWD) and desaturation status in chronic obstructive pulmonary disease (COPD) patients. This study aimed to examine whether change in 6MWD and desaturation in 1 year were risk factors for later mortality, lung function decline and number of exacerbations. A total of 295 COPD patients performed 6MWT at baseline and 1 year later in the Bergen COPD cohort study 2006-2011. They were clinically examined and interviewed at annual visits. Mortality information was collected from the Norwegian Cause of Death Registry in 2015. We performed cox regression for mortality outcomes, linear mixed effect models for lung function, and negative binomial regression for exacerbations. Patients who desaturated in both 6MWTs had increased risk of all-cause and respiratory mortality, hazard ratio (HR) 2.7 (95% confidence interval [CI] 1.5-5.0) and 3.6 (95% CI 1.7-7.6), respectively, compared to non-desaturators. Patients who desaturated only at second 6MWT were at risk for all-cause mortality (HR 2.0, 95% CI 1.0-3.8). There were no apparent association between 6MWD and mortality. Desaturation in second 6MWT was associated with later increased rate of decline in forced vital capacity (FVC) % predicted (after 1 year predicted mean 4.2% above non-desaturators, after 5 years 0.7% below). Decline in 6MWD ≥ 30m was borderline (p = 0.06) associated with later decline in forced expiratory volume in 1 second % predicted, and with exacerbations (p = 0.07). Repeated desaturation in the 6MWT over time in COPD patients is a risk factor for all-cause and respiratory mortality, while onset of desaturation is associated with future FVC decline.


Subject(s)
Exercise Tolerance/physiology , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/physiopathology , Walk Test , Aged , Female , Humans , Male , Middle Aged , Norway , Prognosis , Proportional Hazards Models , Pulmonary Disease, Chronic Obstructive/complications , Risk Factors , Survival Rate , Time Factors , Vital Capacity
15.
J Allergy Clin Immunol ; 144(5): 1198-1213, 2019 11.
Article in English | MEDLINE | ID: mdl-30998987

ABSTRACT

BACKGROUND: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and ß-defensin. CONCLUSION: The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.


Subject(s)
Asthma/immunology , Bronchi/pathology , Epithelial Cells/metabolism , Interleukin-17/metabolism , Neutrophils/immunology , Psoriasis/immunology , Adult , Biomarkers/metabolism , Cohort Studies , Epithelial Cells/pathology , Female , Gene Expression Profiling , Humans , Interleukin-13/metabolism , Male , Phenotype , Signal Transduction , Transcriptome , Up-Regulation
16.
J Allergy Clin Immunol ; 144(1): 70-82, 2019 07.
Article in English | MEDLINE | ID: mdl-30928653

ABSTRACT

BACKGROUND: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. METHODS: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.


Subject(s)
Asthma/metabolism , Proteome , Sputum/metabolism , Adult , Aged , Asthma/immunology , Asthma/physiopathology , Biomarkers/metabolism , Eosinophilia/immunology , Eosinophilia/metabolism , Eosinophilia/physiopathology , Eosinophils/immunology , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Neutrophils/immunology , Phenotype , Proteomics , Young Adult
17.
J Allergy Clin Immunol ; 143(5): 1811-1820.e7, 2019 05.
Article in English | MEDLINE | ID: mdl-30529449

ABSTRACT

BACKGROUND: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using "omics" technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. OBJECTIVES: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to within-patient clinical and inflammatory changes. METHODS: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. RESULTS: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNose-driven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045). CONCLUSIONS: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.


Subject(s)
Asthma/diagnosis , Electronic Nose , Eosinophils/pathology , Inflammation/diagnosis , Neutrophils/pathology , Adult , Breath Tests , Cluster Analysis , Cohort Studies , Disease Progression , Exhalation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Phenotype , Severity of Illness Index
18.
Am J Respir Cell Mol Biol ; 60(5): 523-531, 2019 05.
Article in English | MEDLINE | ID: mdl-30694715

ABSTRACT

DlCO is a widely used pulmonary function test in clinical practice and a particularly useful measure for assessing patients with chronic obstructive pulmonary disease (COPD). We hypothesized that elucidating genetic determinants of DlCO could lead to better understanding of the genetic architecture of COPD. We estimated the heritability of DlCO using common genetic variants and performed genome-wide association analyses in four cohorts enriched for subjects with COPD (COPDGene [Genetic Epidemiology of COPD], NETT [National Emphysema Treatment Trial], GenKOLS [Genetics of Chronic Obstructive Lung Disease study], and TESRA [Treatment of Emphysema With a Gamma-Selective Retinoid Agonist study]) using a combined European ancestry white dataset and a COPDGene African American dataset. We assessed our genome-wide significant and suggestive associations for DlCO in previously reported genome-wide association studies of COPD and related traits. We also characterized associations of known COPD-associated variants and DlCO. We estimated the SNP-based heritability of DlCO in the European ancestry white population to be 22% (P = 0.0004). We identified three genome-wide significant associations with DlCO: variants near TGFB2, CHRNA3, and PDE11A loci (P < 5 × 10-8). In addition, 12 loci were suggestively associated with DlCO in European ancestry white (P < 1 × 10-5 in the combined analysis and P < 0.05 in both COPDGene and GenKOLS), including variants near NEGR1, CADM2, PCDH7, RETREG1, DACT2, NRG1, ANKRD18A, KRT86, NTN4, ARHGAP28, INSR, and PCBP3. Some DlCO-associated variants were also associated with COPD, emphysema, and/or spirometric values. Among 25 previously reported COPD loci, TGFB2, CHRNA3/CHRNA5, FAM13A, DSP, and CYP2A6 were associated with DlCO (P < 0.001). We identified several genetic loci that were significantly associated with DlCO and characterized effects of known COPD-associated loci on DlCO. These results could lead to better understanding of the heterogeneous nature of COPD.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/genetics , Genetic Loci , Genetic Predisposition to Disease , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/genetics , Receptors, Nicotinic/genetics , Transforming Growth Factor beta2/genetics , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Adult , Black People , Cytochrome P-450 CYP2A6/genetics , Cytochrome P-450 CYP2A6/metabolism , Desmoplakins/genetics , Desmoplakins/metabolism , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression , Genome, Human , Genome-Wide Association Study , Humans , Lung/metabolism , Lung/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/ethnology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/ethnology , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/physiopathology , Receptors, Nicotinic/metabolism , Respiratory Function Tests , Spirometry , Transforming Growth Factor beta2/metabolism , White People
19.
Hum Mol Genet ; 26(8): 1584-1596, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28334838

ABSTRACT

The Asp358Ala variant in the interleukin-6 receptor (IL-6R) gene has been implicated in asthma, autoimmune and cardiovascular disorders, but its role in other respiratory conditions such as chronic obstructive pulmonary disease (COPD) has not been investigated. The aims of this study were to evaluate whether there is an association between Asp358Ala and COPD or asthma risk, and to explore the role of the Asp358Ala variant in sIL-6R shedding from neutrophils and its pro-inflammatory effects in the lung. We undertook logistic regression using data from the UK Biobank and the ECLIPSE COPD cohort. Results were meta-analyzed with summary data from a further three COPD cohorts (7,519 total cases and 35,653 total controls), showing no association between Asp358Ala and COPD (OR = 1.02 [95% CI: 0.96, 1.07]). Data from the UK Biobank showed a positive association between the Asp358Ala variant and atopic asthma (OR = 1.07 [1.01, 1.13]). In a series of in vitro studies using blood samples from 37 participants, we found that shedding of sIL-6R from neutrophils was greater in carriers of the Asp358Ala minor allele than in non-carriers. Human pulmonary artery endothelial cells cultured with serum from homozygous carriers showed an increase in MCP-1 release in carriers of the minor allele, with the difference eliminated upon addition of tocilizumab. In conclusion, there is evidence that neutrophils may be an important source of sIL-6R in the lungs, and the Asp358Ala variant may have pro-inflammatory effects in lung cells. However, we were unable to identify evidence for an association between Asp358Ala and COPD.


Subject(s)
Asthma/genetics , Genetic Association Studies , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Interleukin-6/genetics , Asthma/blood , Asthma/pathology , Female , Humans , Lung/metabolism , Lung/pathology , Male , Neutrophils/metabolism , Neutrophils/pathology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/pathology
20.
Nicotine Tob Res ; 21(6): 714-722, 2019 05 21.
Article in English | MEDLINE | ID: mdl-29767774

ABSTRACT

INTRODUCTION: Cigarette smoking is a major environmental risk factor for many diseases, including chronic obstructive pulmonary disease (COPD). There are shared genetic influences on cigarette smoking and COPD. Genetic risk factors for cigarette smoking in cohorts enriched for COPD are largely unknown. METHODS: We performed genome-wide association analyses for average cigarettes per day (CPD) across the Genetic Epidemiology of COPD (COPDGene) non-Hispanic white (NHW) (n = 6659) and African American (AA) (n = 3260), GenKOLS (the Genetics of Chronic Obstructive Lung Disease) (n = 1671), and ECLIPSE (the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) (n = 1942) cohorts. In addition, we performed exome array association analyses across the COPDGene NHW and AA cohorts. We considered analyses across the entire cohort and stratified by COPD case-control status. RESULTS: We identified genome-wide significant associations for CPD on chromosome 15q25 across all cohorts (lowest p = 1.78 × 10-15), except in the COPDGene AA cohort alone. Previously reported associations on chromosome 19 had suggestive and directionally consistent associations (RAB4, p = 1.95 × 10-6; CYP2A7, p = 7.50 × 10-5; CYP2B6, p = 4.04 × 10-4). When we stratified by COPD case-control status, single nucleotide polymorphisms on chromosome 15q25 were nominally associated with both NHW COPD cases (ß = 0.11, p = 5.58 × 10-4) and controls (ß = 0.12, p = 3.86 × 10-5) For the gene-based exome array association analysis of rare variants, there were no exome-wide significant associations. For these previously replicated associations, the most significant results were among COPDGene NHW subjects for CYP2A7 (p = 5.2 × 10-4). CONCLUSIONS: In a large genome-wide association study of both common variants and a gene-based association of rare coding variants in ever-smokers, we found genome-wide significant associations on chromosome 15q25 with CPD for common variants, but not for rare coding variants. These results were directionally consistent among COPD cases and controls. IMPLICATIONS: We examined both common and rare coding variants associated with CPD in a large population of heavy smokers with and without COPD of NHW and AA descent. We replicated genome-wide significant associations on chromosome 15q25 with CPD for common variants among NHW subjects, but not for rare variants. We demonstrated for the first time that common variants on chromosome 15q25 associated with CPD are similar among COPD cases and controls. Previously reported associations on chromosome 19 showed suggestive and directionally consistent associations among common variants (RAB4, CYP2A7, and CYP2B6) and for rare variants (CYP2A7) among COPDGene NHW subjects. Although the genetic effect sizes for these single nucleotide polymorphisms on chromosome 15q25 are modest, we show that this creates a substantial smoking burden over the lifetime of a smoker.


Subject(s)
Ethnicity/genetics , Genetic Markers , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/etiology , Smokers/statistics & numerical data , Smoking/genetics , Adult , Aged , Aged, 80 and over , Aryl Hydrocarbon Hydroxylases/genetics , Case-Control Studies , Cytochrome P-450 CYP2B6/genetics , Cytochrome P450 Family 2/genetics , Europe/epidemiology , Female , Genome-Wide Association Study/methods , Humans , Longitudinal Studies , Male , Middle Aged , Prevalence , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/adverse effects , Smoking/epidemiology , United States/epidemiology , rab4 GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL