ABSTRACT
Pelizaeus-Merzbacher-like disease (PMLD) is an autosomal recessive hypomyelinating leukodystrophy, which is clinically and radiologically similar to X-linked Pelizaeus-Merzbacher disease (PMD). PMLD is characterized by early-onset nystagmus, delayed development (motor delay, speech delay and dysarthria), dystonia, hypotonia typically evolving into spasticity, ataxia, seizures, optic atrophy, and diffuse leukodystrophy on magnetic resonance imaging (MRI). We identified a 12-year-old Caucasian/Hispanic male with the classical clinical characteristics of PMLD with lack of myelination of the subcortical white matter, and absence of the splenium of corpus callosum. Exome sequencing in the trio revealed novel compound heterozygous pathogenic mutations in SNAP29 (p.Leu119AlafsX15, c.354DupG and p.0?, c.2T > C). Quantitative analysis of the patient's blood cells through RNA sequencing identified a significant decrease in SNAP29 mRNA expression, while western blot analysis on fibroblast cells revealed a lack of protein expression compared to parental and control cells. Mutations in SNAP29 have previously been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. Typical skin features described in CEDNIK syndrome, such as generalized ichthyosis and keratoderma, were absent in our patient. Moreover, the early onset nystagmus and leukodystrophy were consistent with a PMLD diagnosis. These findings suggest that loss of SNAP29 function, which was previously associated with CEDNIK syndrome, is also associated with PMLD. Overall, our study expands the genetic spectrum of PMLD.
Subject(s)
Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Heterozygote , Mutation , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , Child , Humans , Male , Prognosis , Exome SequencingABSTRACT
Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.
ABSTRACT
Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.
Subject(s)
Neurodevelopmental Disorders , Rett Syndrome , Humans , Rett Syndrome/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation/genetics , Phenotype , Transcription Factors/geneticsABSTRACT
Introduction: SuperAgers are adults age 80+ with episodic memory performance that is at least as good as that of average middle-aged adults. Understanding the biological determinants of SuperAging may have relevance to preventing age-related cognitive decline and dementia. This study aimed to identify associations between genetic variations and the SuperAging phenotype using Whole Exome Sequencing (WES). Methods: Sequence Kernel Association Combined (SKAT-C) test was conducted at the gene level including both rare and common variants in 56 SuperAgers and 22 cognitively-average controls from the Alzheimer's disease Neuroimaging Initiative (ADNI). Results: The SuperAging phenotype was associated with variants in the Mitogen-Activated Protein Kinase Kinase 3 (MAP2K3) gene. Three single nucleotide polymorphisms (SNPs) contributed to the significance (rs2363221 [intron 1], rs2230435 [exon 5], rs736103 [intron 7]). Conclusions: MAP2K3 resides in a biological pathway linked to memory. It is in a signaling cascade associated with beta-amyloid mediated apoptosis and has enriched expression in microglia. This preliminary work suggests MAP2K3 may represent a novel therapeutic target for age-related memory decline and perhaps Alzheimer's disease (AD).
ABSTRACT
Background: X-linked spinal muscular atrophy (XL-SMA) results from mutations in the Ubiquitin-Like Modifier Activating Enzyme 1 ( UBA1). Previously, four novel closely clustered mutations have been shown to cause this fatal infantile disorder affecting only males. These mutations, three missense and one synonymous, all lie within Exon15 of the UBA1 gene, which contains the active adenylation domain (AAD). Methods: In this study, our group characterized the three known missense variants in vitro. Using a novel Uba1 assay and other methods, we investigated Uba1 adenylation, thioester, and transthioesterification reactions in vitro to determine possible biochemical effects of the missense variants. Results: Our data revealed that only one of the three XL-SMA missense variants impairs the Ubiquitin-adenylating ability of Uba1. Additionally, these missense variants retained Ubiquitin thioester bond formation and transthioesterification rates equal to that found in the wild type. Conclusions: Our results demonstrate a surprising shift from the likelihood of these XL-SMA mutations playing a damaging role in Uba1's enzymatic activity with Ubiquitin, to other roles such as altering UBA1 mRNA splicing via the disruption of splicing factor binding sites, similar to a mechanism in traditional SMA, or disrupting binding to other important in vivo binding partners. These findings help to narrow the search for the areas of possible dysfunction in the Ubiquitin-proteasome pathway that ultimately result in XL-SMA. Moreover, this investigation provides additional critical understanding of the mutations' biochemical mechanisms, vital for the development of future effective diagnostic assays and therapeutics.
ABSTRACT
AIM: To explore differential DNA methylation (DNAm) in Aicardi syndrome (AIC), a severe neurodevelopmental disorder with largely unknown etiology. PATIENTS & METHODS: We characterized DNAm in AIC female patients and parents using the Illumina 450 K array. Differential DNAm was assessed using the local outlier factor algorithm, and results were validated via qPCR in a larger set of AIC female patients, parents and unrelated young female controls. Functional epigenetic modules analysis was used to detect pathways integrating both genome-wide DNAm and RNA-seq data. RESULTS & CONCLUSION: We detected differential methylation patterns in AIC patients in several neurodevelopmental and/or neuroimmunological networks. These networks may be part of the underlying pathogenic mechanisms involved in the disease.