ABSTRACT
BACKGROUND: The detection of signatures of selection in genomic regions provides insights into the evolutionary process, enabling discoveries regarding complex phenotypic traits. In this research, we focused on identifying genomic regions affected by different selection pressures, mainly highlighting the recent positive selection, as well as understanding the candidate genes and functional pathways associated with the signatures of selection in the Mangalarga Marchador genome. Besides, we seek to direct the discussion about genes and traits of importance in this breed, especially traits related to the type and quality of gait, temperament, conformation, and locomotor system. RESULTS: Three different methods were used to search for signals of selection: Tajima's D (TD), the integrated haplotype score (iHS), and runs of homozygosity (ROH). The samples were composed of males (n = 62) and females (n = 130) that were initially chosen considering well-defined phenotypes for gait: picada (n = 86) and batida (n = 106). All horses were genotyped using a 670 k Axiom® Equine Genotyping Arrayâ (Axiom MNEC670). In total, 27, 104 (chosen), and 38 candidate genes were observed within the signatures of selection identified in TD, iHS, and ROH analyses, respectively. The genes are acting in essential biological processes. The enrichment analysis highlighted the following functions: anterior/posterior pattern for the set of genes (GLI3, HOXC9, HOXC6, HOXC5, HOXC4, HOXC13, HOXC11, and HOXC10); limb morphogenesis, skeletal system, proximal/distal pattern formation, JUN kinase activity (CCL19 and MAP3K6); and muscle stretch response (MAPK14). Other candidate genes were associated with energy metabolism, bronchodilator response, NADH regeneration, reproduction, keratinization, and the immunological system. CONCLUSIONS: Our findings revealed evidence of signatures of selection in the MM breed that encompass genes acting on athletic performance, limb development, and energy to muscle activity, with the particular involvement of the HOX family genes. The genome of MM is marked by recent positive selection. However, Tajima's D and iHS results point also to the presence of balancing selection in specific regions of the genome.
Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Female , Genotype , Haplotypes , Homozygote , Horses/genetics , Male , Selection, GeneticABSTRACT
The post-operative period can generate immunological stress and can be modulated through supplementation with the omega-3 series of polyunsaturated fatty acids. This study aimed to evaluate the effects of diets enriched with high doses of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids and glutamine on inflammatory mediators in dogs before and after ovariohysterectomy (OVH). Twelve female dogs were divided into two groups: group A was fed a commercial diet without the addition of EPA and DHA, and group B was fed an experimental diet enriched with EPA and DHA (0.2 g/100 kcal). Experimental diet intake initiated 21 days before surgery and continued until 30 days after OVH. Parameters measured were serum cytokines (TNF-α, IL-6 and IL-10), C-reactive protein (CRP), IGF-1, lymphoproliferation and body composition before and after surgery. Statistical analyses were performed with SAS software considering the effects of age and diet and their interactions, and means were compared by the Tukey test. There was no difference between groups in body weight (p = .682), lean mass (p = .101) and body fat (p = .103). There were no group differences in serum concentrations of TNF-α, IL-6, IL-10, IGF-1, CRP and the percentage of lymphocyte proliferation. However, a time effect for TNF-α was observed (p < .001), in which T0P (10 days after the surgical procedure) presented lower values of this cytokine when compared to the other evaluation time points; and interaction effects between group and time were observed for serum concentrations of IL-6 (p < .001) and IL-10 (p = .002). OVH procedure was not considered invasive enough to increase inflammatory cytokines after 30 days of surgery, as well as the dosage of the EPA and DHA used before and after the surgery did not modulate the inflammatory markers.
Subject(s)
Cytokines/blood , Diet , Dog Diseases , Inflammation , Animals , Diet/veterinary , Docosahexaenoic Acids/administration & dosage , Dogs , Eicosapentaenoic Acid/administration & dosage , Female , Fish Oils , Glutamine/administration & dosage , Hysterectomy/veterinary , Inflammation/veterinary , Ovariectomy/veterinaryABSTRACT
BACKGROUND: Positively correlated with carcass weight and animal growth, the ribeye area (REA) and the backfat thickness (BFT) are economic important carcass traits, which impact directly on producer's payment. The selection of these traits has not been satisfactory since they are expressed later in the animal's life and multigene regulated. So, next-generation technologies have been applied in this area to improve animal's selection and better understand the molecular mechanisms involved in the development of these traits. Correlation network analysis, performed by tools like WGCNA (Weighted Correlation Network Analysis), has been used to explore gene-gene interactions and gene-phenotype correlations. Thus, this study aimed to identify putative candidate genes and metabolic pathways that regulate REA and BFT by constructing a gene co-expression network using WGCNA and RNA sequencing data, to better understand genetic and molecular variations behind these complex traits in Nelore cattle. RESULTS: The gene co-expression network analysis, using WGCNA, were built using RNA-sequencing data normalized by transcript per million (TPM) from 43 Nelore steers. Forty-six gene clusters were constructed, between them, three were positively correlated (p-value< 0.1) to the BFT (Green Yellow, Ivory, and Light Yellow modules) and, one cluster was negatively correlated (p-value< 0.1) with REA (Salmon module). The enrichment analysis performed by DAVID and WebGestalt (FDR 5%) identified eight Gene Ontology (GO) terms and three KEGG pathways in the Green Yellow module, mostly associated with immune response and inflammatory mechanisms. The enrichment of the Salmon module demonstrated 19 GO terms and 21 KEGG pathways, related to muscle energy metabolism, lipid metabolism, muscle degradation, and oxidative stress diseases. The Ivory and Light yellow modules have not shown significant results in the enrichment analysis. CONCLUSION: With this study, we verified that inflammation and immune response pathways modulate the BFT trait. Energy and lipid metabolism pathways, highlighting fatty acid metabolism, were the central pathways associated with REA. Some genes, as RSAD2, EIF2AK2, ACAT1, and ACSL1 were considered as putative candidate related to these traits. Altogether these results allow us to a better comprehension of the molecular mechanisms that lead to muscle and fat deposition in bovine.
Subject(s)
Adiposity/genetics , Cattle/growth & development , Cattle/genetics , Muscle Development/genetics , Animals , Cattle/metabolism , Energy Metabolism/genetics , Gene Expression , Gene Regulatory Networks , Genetic Association Studies , Lipid Metabolism/genetics , Metabolic Networks and Pathways/genetics , Sequence Analysis, RNAABSTRACT
The objective of the present study was to investigate the impact of considering population structure in cow genotyping strategies over the accuracy and bias of genomic predictions. A small dairy cattle population was simulated to address these objectives. Based on four main traditional designs (random, top-yield, extreme-yield and top-accuracy cows), different numbers (1,000; 2,000 and 5,000) of cows were sampled and included in the reference population. Traditional designs were replicated considering or not population structure and compared among and with a reference population containing only bulls. The inclusion of cows increased accuracy in all scenarios compared with using only bulls. Scenarios accounting for population structure when choosing cows to the reference population slightly outperformed their traditional versions by yielding higher accuracy and lower bias in genomic predictions. Building a cow-based reference population from groups of related individuals considering the frequency of individuals from those same groups in the validation population yielded promising results with applications on selection for expensive- or difficult-to-measure traits. Methods here presented may be easily implemented in both new or already established breeding programs, as they improved prediction and reduced bias in genomic evaluations while demanding no additional costs.
Subject(s)
Breeding/methods , Cattle/genetics , Genotype , Animals , Female , PhenotypeABSTRACT
Canine obesity is a common medical disorder and a known risk factor for associated diseases; it can seriously influence various physiological functions, thereby limiting the longevity of the animal. In this study, we evaluated potential respiratory alterations in obese dogs before and after being subjected to caloric restriction to decrease their body weight by 20%, and compared those dogs with control dogs with ideal body condition score. The animals were divided into three experimental groups: GI (obese dogs; n = 11); GII (obese dogs after weight loss, same animals as in GI); GIII (control dogs; n = 11). We evaluated lung function by spirometry and arterial blood gases. Statistical analysis included paired or non-paired Student's t test. Compared with dogs within an ideal body condition score (GIII), obese dogs (GI) had a low arterial partial pressure of oxygen (p < 0.05); decreased tidal volume (p < 0.005), inspiratory time and expiratory time (p < 0.05); and an increased respiratory rate (p < 0.005). After losing weight (GII), no differences with control dogs (GIII) were verified. The results suggested that obese dogs have an improvement in respiratory function with weight loss, but further investigations in a larger group of dogs are advised to confirm these findings.
Subject(s)
Blood Gas Analysis/veterinary , Caloric Restriction/veterinary , Dog Diseases/therapy , Obesity/veterinary , Weight Loss , Animals , Dogs , Obesity/therapy , Respiratory Physiological PhenomenaABSTRACT
BACKGROUND: Commercial cuts yield is an important trait for beef production, which affects the final value of the products, but its direct determination is a challenging procedure to be implemented in practice. The measurement of ribeye area (REA) and backfat thickness (BFT) can be used as indirect measures of meat yield. REA and BFT are important traits studied in beef cattle due to their strong implication in technological (carcass yield) and nutritional characteristics of meat products, like the degree of muscularity and total body fat. Thus, the aim of this work was to study the Longissimus dorsi muscle transcriptome of Nellore cattle, associated with REA and BFT, to find differentially expressed (DE) genes, metabolic pathways, and biological processes that may regulate these traits. RESULTS: By comparing the gene expression level between groups with extreme genomic estimated breeding values (GEBV), 101 DE genes for REA and 18 for BFT (false discovery rate, FDR 10%) were identified. Functional enrichment analysis for REA identified two KEGG pathways, MAPK (Mitogen-Activated Protein Kinase) signaling pathway and endocytosis pathway, and three biological processes, response to endoplasmic reticulum stress, cellular protein modification process, and macromolecule modification. The MAPK pathway is responsible for fundamental cellular processes, such as growth, differentiation, and hypertrophy. For BFT, 18 biological processes were found to be altered and grouped into 8 clusters of semantically similar terms. The DE genes identified in the biological processes for BFT were ACHE, SRD5A1, RSAD2 and RSPO3. RSAD2 has been previously shown to be associated with lipid droplet content and lipid biosynthesis. CONCLUSION: In this study, we identified genes, metabolic pathways, and biological processes, involved in differentiation, proliferation, protein turnover, hypertrophy, as well as adipogenesis and lipid biosynthesis related to REA and BFT. These results enlighten some of the molecular processes involved in muscle and fat deposition, which are economically important carcass traits for beef production.
Subject(s)
Metabolic Networks and Pathways , Paraspinal Muscles/metabolism , Phenotype , Signal Transduction , Transcriptome , Animal Husbandry , Animals , Breeding , Cattle/genetics , Cattle/metabolism , Mitogen-Activated Protein Kinases , Paraspinal Muscles/physiology , Sequence Analysis, RNAABSTRACT
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Subject(s)
Muscle, Skeletal , Proteome , Red Meat , Animals , Cattle , Red Meat/analysis , Male , Hydrogen-Ion Concentration , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Muscle Proteins/metabolism , Proteomics/methods , Postmortem ChangesABSTRACT
A high-protein hypercaloric diet enriched with glutamine and omega-3 polyunsaturated fatty acids was called an onco-diet. The goal was to verify the modulation of the inflammatory response and body composition of female dogs with mammary tumor after mastectomy, during onco-diet consumption, using a randomized, double-blinded, clinical trial. Six bitches (average age of 8.6 years) were allocated into Control Group-diet without glutamine, EPA and DHA supplementation; and six bitches (10.0 years) were allocated into Test-diet enriched with glutamine and omega-3. Serum measurements of TNF-α, IL-6, IL-10, IGF-1, C-reactive protein and determination of body composition were performed at pre- and post-surgical times. Statistical tests were used to compare the nutrient intake and dietary effects on inflammatory variables between the diets. No differences in concentrations of different cytokines (p>0.05) and C-reactive protein (CRP) (p = 0.51) were observed between the groups. The test group had a higher concentration of IGF-1 (p<0.05), higher percentage of muscle mass (p<0.01) and lower body fat (p<0.01), but the difference was present from initial and throughout the study. Onco-diet, enriched with glutamine and omega-3, in the amounts evaluated in this study, was not sufficient to modulate the inflammation and body composition of female dogs with mammary tumors submitted to unilateral mastectomy.
Subject(s)
Fatty Acids, Omega-3 , Neoplasms , Animals , Dogs , Female , Body Composition , C-Reactive Protein/metabolism , Diet/veterinary , Docosahexaenoic Acids , Fatty Acids, Omega-3/metabolism , Glutamine/metabolism , Insulin-Like Growth Factor I/metabolism , Mastectomy , Pilot ProjectsABSTRACT
The aim was to evaluate the effect of feeding a low-phosphorus and maintenance protein diet in healthy cats and cats with chronic kidney disease (CKD) with IRIS stages 1 (CKD-1) and 2 (CKD-2). Cats were initially fed a senior diet (30 days) followed by the renal diet (60 days). Body composition, body weight (BW), muscle mass score (MMS), and body condition score (BCS) were assessed before (T30) and after renal diet intake (T60). General mixed linear models were used to assess the effects of fixed groups and moments (T30 × T60), as well as their interaction, in addition to the random effects of animals within each group. Unlike healthy cats and cats with CKD-1, cats with CKD-2 had a loss of BW, lower BCS (p < 0.005), and lower MMS (p = 0.0008) after 60 days of consuming the renal diet. The fat mass and lean body mass (LBM), determined by the deuterium isotopes method, did not change in all cats between T0 and T60. In healthy cats and cats with CKD-1, the renal diet resulted in maintenance of BW, BCS and MMS; but cats with CKD-2 presented lower BCS and did not reduce phosphatemia after consumption.
Subject(s)
Phosphorus , Renal Insufficiency, Chronic , Cats , Animals , Diet/veterinary , Body Weight , Renal Insufficiency, Chronic/veterinary , Body CompositionABSTRACT
The aim of this work was to compare the lipidome and metabolome profiling in the Longissimus thoracis muscle early and late postmortem from high and normal ultimate pH (pHu) beef. Lipid profiling discriminated between high and normal pHu beef based on fatty acid metabolism and mitochondrial beta-oxidation of long chain saturated fatty acids at 30 min postmortem, and phospholipid biosynthesis at 44 h postmortem. Metabolite profiling also discriminated between high and normal pHu beef, mainly through glutathione, purine, arginine and proline, and glycine, serine and threonine metabolisms at 30 min postmortem, and glycolysis, TCA cycle, glutathione, tyrosine, and pyruvate metabolisms at 44 h postmortem. Lipid and metabolite profiles showed reduced glycolysis and increased use of alternative energy metabolic processes that were central to differentiating high and normal pHu beef. Phospholipid biosynthesis modification suggested high pHu beef experienced greater oxidative stress.
Subject(s)
Lipidomics , Metabolome , Animals , Cattle , Hydrogen-Ion Concentration , Glutathione/metabolism , Phospholipids , Muscle, Skeletal/metabolismABSTRACT
The proteome basis for the biological variations in color and tenderness of longissimus thoracis muscle from ½ Angus (Bos taurus taurus) × ½ Nellore (Bos taurus indicus) crossbred steers was evaluated in a completely randomized experimental design consisting of four treatments (n = 9 per treatment): 1) feedlot finished, high growth rate (FH); 2) feedlot finished, low growth rate (FL); 3) pasture finished, high growth rate (PH); and 4) pasture finished, low growth rate (PL). The following comparisons were made to evaluate the effects of finishing systems and growth rates on muscle proteome: 1) FH × PL; 2) FL × PH; 3) FH × FL; and 4) PH × PL. Sixteen protein spots were differentially abundant among these comparisons (P ≤ 0.05), which were distinguished in two major clusters, energy metabolism- and muscle structure-related proteins that impacted glycolysis, carbon metabolism, amino acid biosynthesis and muscle contraction pathways (FDR ≤ 0.05). For FH × PL comparison, triosephosphate isomerase (TPI), phosphoglucomutase-1 (PGM1) and phosphoglycerate kinase 1 (PGK1) were overabundant in FH beef whereas troponin T (TNNT3), α-actin (ACTA1) and myosin regulatory light chain 2 (MYLPF) were overabundant in PL beef. For the FL × PH comparison, PGM1, phosphoglycerate mutase 2 (PGAM2) and annexin 2 (ANXA2) were overabundant in PH beef. For the FH × FL comparison, AMP deaminase (AMPD1) and serum albumin (ALB) were overabundant in FH beef whereas glycogen phosphorylase (PYGM) was overabundant in FL beef. For the PH × PL comparison, myoglobin (MB) was overabundant in PH beef whereas PYGM and MYLPF were overabundant in PL beef. In non-aged beef, L* was positively correlated with PGM1 (r = 0.54) while tenderness was negatively correlated with PGAM2 (r = -0.74) and ANXA2 (r = -0.60). In 7-d aged beef, color attributes (L*, a* and b*) were positively correlated with PGM1 (r = 0.67, 0.64 and 0.64, respectively) while tenderness was negatively correlated with TNNT3 (r = -0.57), PGK1 (r = -0.52) and MYLPF (r = -0.66). Therefore, finishing systems and growth rate affected the muscle proteome profile, which was related to beef color and tenderness. Additionally, these results suggest potential biomarkers for beef color (PGM1 and PGAM2) and tenderness (ANXA2, MYLPF, PGK1 and TNNT3).
Subject(s)
Muscle Proteins , Proteome , Animals , Cattle , Glycolysis , Muscle Proteins/metabolism , Paraspinal Muscles/metabolism , Proteome/metabolismABSTRACT
In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.
ABSTRACT
Prebiotics promote health benefits, however, there is no consensus on the minimal intake period required in order to obtain good results. This study evaluated the effect of the time of ingestion of prebiotics on fecal fermentation products and immunological features in dogs. Twenty-four adult dogs were randomly distributed in a block design with six groups and four treatments. Diet and intake period were variation factors. Diets were either a control diet without the addition of prebiotic (CO) or with the inclusion of 1% of a commercial product containing a minimum of 0.38% galactooligosaccharides (GOS), 0.5% (B1) or 1% (B2) of a prebiotic blend. Time variable was set at 30 and 60 days for evaluation of immunity and gut health. Results were analyzed in the Statistical Analysis System software (SAS), version 9.4, considering the repeated measures over time design, and means were compared by the Tukey test and p < 0.05 was significant. Propionic acid was the only variable that had an interaction effect, with reduction of this metabolite in treatment B2 in the period of 60 days. At T60, concentrations of immunoglobulin A, lactic acid, and pH in the feces increased (p < 0.05) in all treatments regardless of prebiotic inclusion or not. GOS increased fecal score and lactic acid concentrations. Therefore, a 60-day intake period of a prebiotic blend was not sufficient to modulate fecal and immune variables and higher concentrations of a single prebiotic would be more relevant for results.
ABSTRACT
Oleic acid (OA) and cis-9, trans-11 conjugated linoleic acid (c9t11-CLA) are fatty acids found in beef with beneficial effects in human health. This study investigated differentially abundant proteins (DAPs) in skeletal muscle of bovines with extreme values of OA, and c9t11-CLA. For each one of the fatty acids, twenty muscle samples were divided into two groups (N = 10_High; N = 10_Low) and analyzed by high definition mass spectrometry. We identified 103 and 133 DAPs between the groups for each fatty acid. We found 64 and 45 up-regulated and 39 and 68 down-regulated proteins for OA and c9t11-CLA, respectively. Comparative analysis between proteomic and transcriptomic data revealed eight and ten genes with a consistent between mRNA expression levels and protein abundance for OA and c9t11-CLA, respectively. Unconventional myosin-Id (MYO1D), mineralocorticoid receptor (NR3C2), geranylgeranyl transferase type-2 subunit-alpha (RABGGTA), and uveal autoantigen with coiled-coil domains and ankyrin repeats (UACA) were found as putative candidate proteins for OA content. Fatty acid synthase (FASN), tubulin alpha-4A chain (TUBA4A), vinculin (VCL), NADH dehydrogenase 1 alpha subcomplex 5 (NDUFA5), and prefoldin subunit 6 (PFDN6) for c9t11-CLA. Our findings contribute to a deeper understanding of the molecular mechanisms behind the regulation of the OA and c9t11-CLA content in cattle skeletal muscle. SIGNIFICANCE: Questions about the association between meat intake and disease incidence in humans has driven animal scientist to pursue a better understanding of the biological processes associated with differences in the intramuscular fat composition. The beneficial effects of oleic acid and conjugated linoleic acid in human health have been demonstrated by improving the immune system and preventing atherosclerosis, different types of cancers, hypertension, and diabetes. Previous genome-wide association and gene expression studies identified genomic regions and differentially expressed genes associated with the fatty acid profile in skeletal muscle. In this work, differences were evaluated at the protein level. The use of a label-free quantitative proteomic approach, compared with muscle transcriptome results obtained by RNA-sequencing, allowed us to earn new insights into the variability in fatty acid deposition in skeletal muscle of farm animals. This study opens new avenues to explore the effect of the fatty acids in the skeletal muscle of livestock animals, which is associated with nutritional values of the meat, and perhaps to understand the mechanisms correlated with metabolic diseases in other species.
Subject(s)
Linoleic Acids, Conjugated , Animals , Cattle , Fatty Acids , Genome-Wide Association Study , Muscle, Skeletal , Oleic Acid , Proteome , ProteomicsABSTRACT
Climate change is seen as a significant threat to the sustainability of livestock production systems in many parts of the world, particularly in tropical regions. Extreme meteorological events can result in catastrophic production and death of livestock. Heat waves in particular can push vulnerable animals beyond their survival threshold limits. However, there is little information about buffalo responses to sudden changes in the thermal environment, specifically the heat waves. This study aimed to quantify the thermoregulatory and blood biochemical responses of heat-acclimatized buffaloes to a simulated heat wave. The experiment was designed in a climatic chamber with two periods of 4 days each. Twelve heat acclimated buffalo heifers aged 18 months were used. The climatic chamber environment was set as follows: 4-day period (P1) simulating the same weather conditions of a summer in humid tropical climate used as a baseline, with daily cycle with Ta and RH at 27 ± 1 °C and 76% from 0600 h to 1900 h and 24 ± 1 °C and 80% from 1900 h to 0600 h, and 4-day period (P2), simulating a daily heat wave cycle, from 0600 h to 1900 h with Ta and RH kept at 36 °C and 78% and from 1900 h to 0600 h, 27 °C and 74%. All animals were subject to both treatments and data were analyzed by a repeated measure analysis of variance, with post-hoc pooling comparison performed by Tukey's test. In P2, there was observed a significant increase in respiratory frequency (p < 0.01), found four times in P1. The sweating rates were quite high in both periods; still, there were significant increases in P2 compared to P1 (p < 0.01) (4931 and 3201 g/m2/h, respectively). A slight but significant increase in rectal temperature was observed during the day (p < 0.01), with a rising until 1900 h. The simulated heat wave in P2 did not affect the values of the erythrogram or leukogram, excluding the significant reduction in K+ (p < 0.05). The low heat storage and the subsequent fast and full recovery of the thermal balance late afternoon appear to be related to the high sweating rate values. The massive sweating rate emphasizes its relevance in the maintenance of buffalo homeothermy. The absence of changes in hematological parameters has revealed the considerable physiological resilience of buffaloes toward simulated heat waves.
ABSTRACT
The demand for animal products (e.g. dairy and beef) in tropical regions is expected to increase in parallel with the public demand for sustainable practices, due to factors such as population growth and climate change. The necessity to increase animal production output must be achieved with better management and production technologies. For this to happen, novel research methodologies, animal selection and postgenomic tools play a pivotal role. Indeed, improving breeder selection programs, the quality of meat and dairy products as well as animal health will contribute to higher sustainability and productivity. This would surely benefit regions where resource quality and quantity are increasingly unstable, and research is still very incipient, which is the case of many regions in the tropics. The purpose of this review is to demonstrate how omics-based approaches play a major role in animal science, particularly concerning ruminant production systems and research associated to the tropics and developing countries. SIGNIFICANCE: Environmental conditions in the tropics make livestock production harder, compared to temperate regions. Due to global warming, the sustainability of livestock production will become increasingly problematic. The use of novel omics technologies could generate useful information to understand adaptation mechanisms of resilient breeds and/or species. The application of omics to tropical animal production is still residual in the currently available literature. With this review, we aim to summarize the most notable results in the field whilst encouraging further research to deal with the future challenges that animal production in the tropics will need to face.
Subject(s)
Livestock , Ruminants , Acclimatization , Animals , Cattle , Climate ChangeABSTRACT
Considering the market availability of new commercial layer strains with distinct characteristics and behaviors, studies to update their nutritional requirements and to evaluate the need to adopt management practices, such as beak trimming, are needed. The objective of the present study was to evaluate the effects of dietary metabolizable energy (ME) levels and beak trimming on the live performance, egg quality, and economics of commercial layers. A total of 640 Novogen White layers were distributed according to a randomized experimental design in a 5 × 2 factorial arrangement (5 ME levels × 2 beak trimming treatments), totaling 10 treatments with 8 replicates of 8 hens each. The evaluated dietary ME levels were 2,600; 2,700; 2,800; 2,900; and 3,000 kcal/kg of feed. Layers were beak-trimmed once (7 days old) or twice (7 and 70 days old). Live performance and egg quality mesuraments and production economics were analyzed. Egg production was positively influenced by dietary ME levels. Feed intake (FI), feed conversion ratio (FCR), egg weight, albumen height, Haugh units, and eggshell strength were positively influenced by increasing dietary ME levels. Hens beak-trimmed once presented higher feed intake and worse FCR than those beak-trimmed twice. Beak trimming did not affect egg production, egg weight, albumen height, Haugh units, and eggshell strength. Production costs increased as dietary ME levels increased. Higher production cost was determined for hens beak-trimmed once than for those beak-trimmed twice. Total revenue was not influenced by the treatments. Gross margin was linearly decreased as dietary ME levels increased and was lower when hens were beak-trimmed once. Increasing dietary ME levels and beak trimming hens once reduce the economic viability of egg production.
Subject(s)
Animal Husbandry/methods , Beak/surgery , Chickens/physiology , Energy Metabolism , Ovum/physiology , Animal Husbandry/economics , Animals , Chickens/growth & development , Female , Random AllocationABSTRACT
In the present study, 155 Nellore cattle were genotyped for the CAPN4751 and UOGCAST polymorphisms and phenotyped for shear force (SF) at 1, 7 and 14days aging. The effects of different genotypic combinations were evaluated on the Longissimus muscle proteomic profile using 2DE and mass spectrometry. A significant association was found between genotypes for UOGCAST and CAPN4751 and meat tenderness. The CC genotype for both markers was favorable for lesser shear force than TT. A total of 40 spots showed significant differential expression profiles (P<0.05), of which eight had a main effect for the CAPN4751 marker, 11 for UOGCAST, two for both markers, and 19 had interactions between markers, including myosin (MYL1, MYL2, MYLPF and MYL6B), actin (ACTA1 and CAPZß), troponin (TNNT1 and TNNT3) and heat shock proteins (HSPB6, HSPB1 and HSP70-2). The results demonstrated that UOGCAST and CAPN4751 genotypes led to variability on the expression of proteins that are involved in muscle metabolism, and consequently affect meat tenderness.
Subject(s)
Cattle/genetics , Muscle, Skeletal/metabolism , Proteome/genetics , Red Meat/analysis , Animals , Genotype , Heat-Shock Proteins/analysis , Male , Muscle Proteins/analysisABSTRACT
Melatonin may have beneficial effects when used in oocyte maturation and embryo development culture. The effect of melatonin during IVM on meiosis resumption and progression in bovine oocytes and on expression of antioxidant enzymes, nuclear fragmentation and free radicals, as well as on embryo development were assessed. Cumulus-oocyte complexes were matured in vitro with melatonin (10(-9) and 10(-6) M), FSH (positive control), or without hormones (negative control) in defined medium. Maturation rates were evaluated at 6, 12, 18, and 24 hours. Transcripts for antioxidant enzymes (CuZnSOD, MnSOD, and glutathione peroxidase 4 (GPX4)) in oocytes and cumulus cells, nuclear fragmentation in cumulus cells (TUNEL) and reactive oxygen species levels in oocytes (carboxy-H2 difluorofluorescein diacetate) were determined at 24 hours IVM. Effect of treatments on embryo development was determined after in vitro fertilization and culture. At 12 hours, meiosis resumption rates in FSH and melatonin-treated groups were similar (69.6%-81.8%, P > 0.05). At 24 hours, most oocytes were in metaphase II, with FSH showing highest rates (90.0%, P < 0.05) compared with the other groups (51.6%-69.1%, P > 0.05). In cumulus cells, MnSOD expression was higher in FSH group (P < 0.05) whereas Cu,ZnSOD transcripts were more abundant in melatonin group (10(-6)M; P < 0.05). Nuclear fragmentation in cumulus cells was highest in controls (37.4%/10,000 cells; P < 0.05) and lower in FSH and 10(-6)M melatonin (29.4% and 25.6%/10,000 cells, respectively). Reactive oxygen species levels were lower in oocytes matured with 10(-6)M melatonin than in control and FSH groups (P < 0.05). Embryo development from oocytes matured only with melatonin was similar to those matured in complete medium (P > 0.05). In conclusion, although melatonin during IVM in a defined medium does not stimulate nuclear maturation progression it does stimulate meiosis resumption and such treated oocytes support subsequent embryo development. Melatonin also shows cytoprotective effects on cumulus-oocyte complexes.
Subject(s)
Cattle/embryology , In Vitro Oocyte Maturation Techniques/veterinary , Meiosis/drug effects , Melatonin/pharmacology , Oocytes/physiology , Oxidative Stress/drug effects , Animals , Dose-Response Relationship, Drug , Embryonic Development/drug effects , Female , Meiosis/physiology , Melatonin/administration & dosageABSTRACT
Este estudo teve como objetivo avaliar a influência de recursos de climatização, ventilação e nebulização, sobre a fisiologia e o comportamento de vacas Holandesas alojadas em free-stall, durante o verão do sudeste brasileiro. Foram utilizadas 20 vacas Holandesas submetidas a dois tratamentos com e sem climatização. Os parâmetros ambientais registrados foram temperatura de bulbo seco, umidade relativa do ar e temperatura de globo negro. As variáveis fisiológicas avaliadas foram temperatura retal e frequência respiratória. As variáveis comportamentais registradas foram postura e suas atividades dentro da instalação. Para análise estatística utilizou-se a metodologia de quadrados mínimos por meio do procedimento PROC MIXED e PROC GLM. Apesar das diferenças estatísticas obtidas para as variáveis fisiológicas, as mesmas não foram biologicamente efetivas e indicaram que os animais se encontravam em conforto térmico. Os animais que dispunham de ventilação e nebulização alimentaram-se mesmo nas horas mais quentes do dia. A climatização é uma estratégia que permite maior conforto térmico aos animais e por consequência pode aperfeiçoar a produção leiteira através do aumento no consumo alimentar.
This study aimed to evaluate the influence of cooling systems, ventilation and nebulization on the physiology and behavior of Holstein cows housed in free-stall during the summer of southeastern Brazil. 20 Holstein cows were subjected to two treatments with and without cooling system. Environmental parameters dry bulb temperature, relative humidity and black globe temperature were also recorded. Rectal temperature and respiratory rate were evaluated at 5h, 9h30min, 11h30min, 13h30min, 16h30min, 18h30min e 21h30min. The behavioral variables recorded were posture and activities from 5h to 21:30h. Statistics we done using the method of least squares means. Despite the statistical differences obtained for the physiological variables, they were not biologically effective and indicated that the animals were in thermal comfort. Animals that had ventilation and nebulization have eaten even during the hottest hours of the day. The cooling system is a strategy that allows greater thermal comfort to animals and therefore can optimize milk production by increasing the dietary intake.