Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Publication year range
1.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: mdl-34758478

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
2.
Mol Biol Evol ; 38(4): 1249-1261, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33432328

ABSTRACT

The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Ceftriaxone/therapeutic use , Drug Resistance, Bacterial/genetics , Gonorrhea/microbiology , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Gonorrhea/drug therapy , Humans , Neisseria gonorrhoeae/drug effects , Phylogeography
3.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27654912

ABSTRACT

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , Mutation Rate , Phylogeny , Racial Groups/genetics , Animals , Australia , Black People/genetics , Datasets as Topic , Genetics, Population , History, Ancient , Human Migration/history , Humans , Native Hawaiian or Other Pacific Islander/genetics , Neanderthals/genetics , New Guinea , Sequence Analysis, DNA , Species Specificity , Time Factors
4.
Mol Biol Evol ; 37(3): 773-785, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31697387

ABSTRACT

The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.


Subject(s)
Malaria, Vivax/parasitology , Plasmodium vivax/classification , Plasmodium vivax/genetics , Whole Genome Sequencing/methods , Americas , Asia , Evolution, Molecular , Genetics, Population , Genome, Protozoan , High-Throughput Nucleotide Sequencing , Humans , Oceania , Phylogeny , Phylogeography , Spain
5.
Mol Ecol ; 30(8): 1823-1835, 2021 04.
Article in English | MEDLINE | ID: mdl-33305421

ABSTRACT

Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales is critical to assess the pace of this evolutionary process. Here, we characterized and quantified gene turnover for the epidemic lineage of a bacterial plant pathogen of major agricultural importance worldwide. Relying on a dense geographic sampling spanning 39 years of evolution, we estimated both the dynamics of single nucleotide polymorphism accumulation and gene content turnover. We identified extensive gene content variation among lineages even at the smallest phylogenetic and geographic scales. Gene turnover rate exceeded nucleotide substitution rate by three orders of magnitude. Accessory genes were found preferentially located on plasmids, but we identified a highly plastic chromosomal region hosting ecologically important genes such as transcription activator-like effectors. Whereas most changes in the gene content are probably transient, the rapid spread of a mobile element conferring resistance to copper compounds widely used for the management of plant bacterial pathogens illustrates how some accessory genes can become ubiquitous within a population over short timeframes.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Genome, Bacterial , Plant Diseases/microbiology , Bacteria , Phylogeny
6.
Mol Biol Evol ; 36(11): 2512-2521, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31273385

ABSTRACT

Epstein-Barr virus (EBV) is one of the most common viral infections in humans and persists within its host for life. EBV therefore represents an extremely successful virus that has evolved complex strategies to evade the host's innate and adaptive immune response during both initial and persistent stages of infection. Here, we conducted a comparative genomics analysis on 223 whole genome sequences of worldwide EBV strains. We recover extensive genome-wide linkage disequilibrium (LD) despite pervasive genetic recombination. This pattern is explained by the global EBV population being subdivided into three main subpopulations, one primarily found in East Asia, one in Southeast Asia and Oceania, and the third including most of the other globally distributed genomes we analyzed. Additionally, sites in LD were overrepresented in immunogenic genes. Taken together, our results suggest that host immune selection and local adaptation to different human host populations has shaped the genome-wide patterns of genetic diversity in EBV.

7.
Thorax ; 75(7): 584-591, 2020 07.
Article in English | MEDLINE | ID: mdl-32546574

ABSTRACT

BACKGROUND: Understanding how pathogen genetic factors contribute to pathology in TB could enable tailored treatments to the most pathogenic and infectious strains. New strategies are needed to control drug-resistant TB, which requires longer and costlier treatment. We hypothesised that the severity of radiological pathology on the chest radiograph in TB disease was associated with variants arising independently, multiple times (homoplasies) in the Mycobacterium tuberculosis genome. METHODS: We performed whole genome sequencing (Illumina HiSeq2000 platform) on M. tuberculosis isolates from 103 patients with drug-resistant TB in Lima between 2010 and 2013. Variables including age, sex, HIV status, previous TB disease and the percentage of lung involvement on the pretreatment chest radiograph were collected from health posts of the national TB programme. Genomic variants were identified using standard pipelines. RESULTS: Two mutations were significantly associated with more widespread radiological pathology in a multivariable regression model controlling for confounding variables (Rv2828c.141, RR 1.3, 95% CI 1.21 to 1.39, p<0.01; rpoC.1040 95% CI 1.77 to 2.16, RR 1.9, p<0.01). The rpoB.450 mutation was associated with less extensive radiological pathology (RR 0.81, 95% CI 0.69 to 0.94, p=0.03), suggestive of a bacterial fitness cost for this mutation in vivo. Patients with a previous episode of TB disease and those between 10 and 30 years of age also had significantly increased radiological pathology. CONCLUSIONS: This study is the first to compare the M. tuberculosis genome to radiological pathology on the chest radiograph. We identified two variants significantly positively associated with more widespread radiological pathology and one with reduced pathology. Prospective studies are warranted to determine whether mutations associated with increased pathology also predict the spread of drug-resistant TB.


Subject(s)
Bacterial Proteins/genetics , DNA, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/metabolism , Adolescent , Adult , Aged , Bacterial Proteins/metabolism , Child , Female , Follow-Up Studies , Genotype , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
8.
Mol Ecol ; 29(17): 3361-3379, 2020 09.
Article in English | MEDLINE | ID: mdl-32390272

ABSTRACT

Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host-pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host-pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses-such as phylogenetic range, research effort, and being vector-borne-are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host-switching in pathogens.


Subject(s)
Vertebrates , Viruses , Animals , Bacteria/genetics , Host Specificity , Humans , Phylogeny , Vertebrates/genetics , Viruses/genetics
9.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24522598

ABSTRACT

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Subject(s)
Genome, Human/genetics , Indians, North American/genetics , Phylogeny , Archaeology , Asia/ethnology , Bone and Bones , Burial , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Emigration and Immigration/history , Europe/ethnology , Gene Flow/genetics , Haplotypes/genetics , History, Ancient , Humans , Infant , Male , Models, Genetic , Molecular Sequence Data , Montana , Population Dynamics , Radiometric Dating
10.
Clin Infect Dis ; 69(10): 1678-1686, 2019 10 30.
Article in English | MEDLINE | ID: mdl-30689761

ABSTRACT

BACKGROUND: Children with cystic fibrosis (CF) can develop life-threatening infections of Mycobacterium abscessus. These present a significant clinical challenge, particularly when the strains involved are resistant to antibiotics. Recent evidence of within-patient subclones of M. abscessus in adults with CF suggests the possibility that within-patient diversity may be relevant for the treatment of pediatric CF patients. METHODS: We performed whole-genome sequencing (WGS) on 32 isolates of M. abscessus that were taken from multiple body sites of 2 patients with CF who were undergoing treatment at Great Ormond Street Hospital, United Kingdom, in 2015. RESULTS: We found evidence of extensive diversity within patients over time. A clustering analysis of single nucleotide variants revealed that each patient harbored multiple subpopulations, which were differentially abundant between sputum, lung samples, chest wounds, and pleural fluid. The sputum isolates did not reflect the overall within-patient diversity and did not allow for the detection of subclones with mutations previously associated with macrolide resistance (rrl 2058/2059). Some variants were present at intermediate frequencies before the lung transplants. The time of the transplants coincided with extensive variation, suggesting that this event is particularly disruptive for the microbial community, but the transplants did not clear the M. abscessus infections and both patients died as a result of these infections. CONCLUSIONS: Isolates of M. abscessus from sputum do not always reflect the entire diversity present within the patient, which can include subclones with differing antimicrobial resistance profiles. An awareness of this phenotypic variability, with the sampling of multiple body sites in conjunction with WGS, may be necessary to ensure the best treatment for this vulnerable patient group.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Drug Resistance, Multiple, Bacterial , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/drug effects , Anti-Bacterial Agents/therapeutic use , Child , Cystic Fibrosis/complications , Female , Genetic Variation , Humans , Longitudinal Studies , Lung/microbiology , Lung Transplantation/adverse effects , Macrolides/pharmacology , Macrolides/therapeutic use , Male , Microbial Sensitivity Tests , Mycobacterium abscessus/genetics , Phenotype , Polymorphism, Single Nucleotide , Sputum/microbiology , United Kingdom , Whole Genome Sequencing
11.
BMC Genomics ; 20(1): 389, 2019 May 20.
Article in English | MEDLINE | ID: mdl-31109296

ABSTRACT

BACKGROUND: Repeated culture reduces within-sample Mycobacterium tuberculosis genetic diversity due to selection of clones suited to growth in culture and/or random loss of lineages, but it is not known to what extent omitting the culture step altogether alters genetic diversity. We compared M. tuberculosis whole genome sequences generated from 33 paired clinical samples using two methods. In one method DNA was extracted directly from sputum then enriched with custom-designed SureSelect (Agilent) oligonucleotide baits and in the other it was extracted from mycobacterial growth indicator tube (MGIT) culture. RESULTS: DNA directly sequenced from sputum showed significantly more within-sample diversity than that from MGIT culture (median 5.0 vs 4.5 heterozygous alleles per sample, p = 0.04). Resistance associated variants present as HAs occurred in four patients, and in two cases may provide a genotypic explanation for phenotypic resistance. CONCLUSIONS: Culture-free M. tuberculosis whole genome sequencing detects more within-sample diversity than a leading culture-based method and may allow detection of mycobacteria that are not actively replicating.


Subject(s)
Genetic Variation , Mycobacterium tuberculosis/genetics , Adult , Drug Resistance, Bacterial/genetics , Humans , Mycobacterium tuberculosis/isolation & purification , Sputum/microbiology , Tuberculosis/microbiology , Whole Genome Sequencing
12.
BMC Genomics ; 20(1): 433, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142261

ABSTRACT

He authors reported that one of the authors' names was typeset incorrectly in the authorship list.

13.
Glob Chang Biol ; 25(8): 2648-2660, 2019 08.
Article in English | MEDLINE | ID: mdl-31074105

ABSTRACT

The global trend of increasing environmental temperatures is often predicted to result in more severe disease epidemics. However, unambiguous evidence that temperature is a driver of epidemics is largely lacking, because it is demanding to demonstrate its role among the complex interactions between hosts, pathogens, and their shared environment. Here, we apply a three-pronged approach to understand the effects of temperature on ranavirus epidemics in UK common frogs, combining in vitro, in vivo, and field studies. Each approach suggests that higher temperatures drive increasing severity of epidemics. In wild populations, ranavirosis incidents were more frequent and more severe at higher temperatures, and their frequency increased through a period of historic warming in the 1990s. Laboratory experiments using cell culture and whole animal models showed that higher temperature increased ranavirus propagation, disease incidence, and mortality rate. These results, combined with climate projections, predict severe ranavirosis outbreaks will occur over wider areas and an extended season, possibly affecting larval recruitment. Since ranaviruses affect a variety of ectothermic hosts (amphibians, reptiles, and fish), wider ecological damage could occur. Our three complementary lines of evidence present a clear case for direct environmental modulation of these epidemics and suggest management options to protect species from disease.


Subject(s)
DNA Virus Infections , Ranavirus , Animals , Animals, Wild , Climate Change , Reptiles
14.
Proc Natl Acad Sci U S A ; 113(48): 13881-13886, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27872285

ABSTRACT

The "Beijing" Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is spreading globally and has been associated with accelerated disease progression and increased antibiotic resistance. Here we performed a phylodynamic reconstruction of one of the L2 sublineages, the central Asian clade (CAC), which has recently spread to western Europe. We find that recent historical events have contributed to the evolution and dispersal of the CAC. Our timing estimates indicate that the clade was likely introduced to Afghanistan during the 1979-1989 Soviet-Afghan war and spread further after population displacement in the wake of the American invasion in 2001. We also find that drug resistance mutations accumulated on a massive scale in Mtb isolates from former Soviet republics after the fall of the Soviet Union, a pattern that was not observed in CAC isolates from Afghanistan. Our results underscore the detrimental effects of political instability and population displacement on tuberculosis control and demonstrate the power of phylodynamic methods in exploring bacterial evolution in space and time.


Subject(s)
Armed Conflicts , Mycobacterium tuberculosis/genetics , Phylogeny , Tuberculosis/microbiology , Afghanistan/epidemiology , Drug Resistance, Bacterial/genetics , Europe , Evolution, Molecular , Genotype , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/epidemiology , Tuberculosis/genetics , Tuberculosis/prevention & control , USSR/epidemiology , United States/epidemiology
16.
Mol Ecol ; 27(1): 182-195, 2018 01.
Article in English | MEDLINE | ID: mdl-29165844

ABSTRACT

Maladaptation to modern diets has been implicated in several chronic disorders. Given the higher prevalence of disease such as dental caries and chronic gum diseases in industrialized societies, we sought to investigate the impact of different subsistence strategies on oral health and physiology, as documented by the oral microbiome. To control for confounding variables such as environment and host genetics, we sampled saliva from three pairs of populations of hunter-gatherers and traditional farmers living in close proximity in the Philippines. Deep shotgun sequencing of salivary DNA generated high-coverage microbiomes along with human genomes. Comparing these microbiomes with publicly available data from individuals living on a Western diet revealed that abundance ratios of core species were significantly correlated with subsistence strategy, with hunter-gatherers and Westerners occupying either end of a gradient of Neisseria against Haemophilus, and traditional farmers falling in between. Species found preferentially in hunter-gatherers included microbes often considered as oral pathogens, despite their hosts' apparent good oral health. Discriminant analysis of gene functions revealed vitamin B5 autotrophy and urease-mediated pH regulation as candidate adaptations of the microbiome to the hunter-gatherer and Western diets, respectively. These results suggest that major transitions in diet selected for different communities of commensals and likely played a role in the emergence of modern oral pathogens.


Subject(s)
Diet, Paleolithic , Farmers , Host-Pathogen Interactions , Microbiota , Mouth/microbiology , Biodiversity , Genetics, Population , Geography , Humans , Microbiota/genetics , Philippines , Principal Component Analysis , Species Specificity
17.
BMC Biol ; 15(1): 91, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29052511

ABSTRACT

Microbes are found on us, within us and around us. They inhabit virtually every environment on the planet and the bacteria carried by an average human, mostly in their gut, outnumber human cells. The vast majority of microbes are harmless to us, and many play essential roles in plant, animal and human health. Others, however, are either obligate or facultative pathogens exerting a spectrum of deleterious effects on their hosts. Infectious diseases have historically represented the most common cause of death in humans until recently, exceeding by far the toll taken by wars or famines. From the dawn of humanity and throughout history, infectious diseases have shaped human evolution, demography, migrations and history.


Subject(s)
Bacteria/genetics , Bacteria/pathogenicity , Biological Evolution , Communicable Diseases , Genome, Bacterial , Host-Pathogen Interactions , Bacterial Physiological Phenomena , Communicable Diseases/epidemiology , Communicable Diseases/microbiology , Communicable Diseases/transmission , Host Specificity , Humans
18.
Nature ; 471(7339): E1-4; author reply E9-10, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21430721

ABSTRACT

Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.


Subject(s)
Altruism , Biological Evolution , Genetic Fitness , Models, Biological , Selection, Genetic , Animals , Cooperative Behavior , Female , Game Theory , Genetics, Population , Heredity , Humans , Male , Phenotype , Reproducibility of Results , Sex Ratio
19.
Mol Biol Evol ; 32(4): 1020-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25568346

ABSTRACT

Varicella-zoster virus (VZV) causes chickenpox and shingles, and is found in human populations worldwide. The lack of temporal signal in the diversity of VZV makes substitution rate estimates unreliable, which is a barrier to understanding the context of its global spread. Here, we estimate rates of evolution by studying live attenuated vaccines, which evolved in 22 vaccinated patients for known periods of time, sometimes, but not always undergoing latency. We show that the attenuated virus evolves rapidly (∼ 10(-6) substitutions/site/day), but that rates decrease dramatically when the virus undergoes latency. These data are best explained by a model in which viral populations evolve for around 13 days before becoming latent, but then undergo no replication during latency. This implies that rates of viral evolution will depend strongly on transmission patterns. Nevertheless, we show that implausibly long latency periods are required to date the most recent common ancestor of extant VZV to an "out-of-Africa" migration with humans, as has been previously suggested.


Subject(s)
Chickenpox Vaccine/genetics , Evolution, Molecular , Herpesvirus 3, Human/genetics , Virus Latency/genetics , Base Sequence , Chickenpox/epidemiology , Chickenpox/virology , Child , Herpes Zoster/virology , Herpesvirus 3, Human/physiology , Humans , Molecular Sequence Data , Vaccines, Attenuated/genetics
20.
Genome Res ; 23(4): 653-64, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23299977

ABSTRACT

The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.


Subject(s)
Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Cluster Analysis , Drug Resistance, Bacterial/genetics , Genomics , Genotype , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Pandemics , Phylogeny , Phylogeography , Staphylococcal Infections/transmission , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL