Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32160527

ABSTRACT

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Subject(s)
Multiple Sclerosis/metabolism , Propionates/immunology , Propionates/metabolism , Adult , Aged , Disease Progression , Feces/chemistry , Feces/microbiology , Female , Humans , Immunomodulation/physiology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Propionates/therapeutic use , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
2.
Immunity ; 43(4): 817-29, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488817

ABSTRACT

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Subject(s)
Autoimmunity/drug effects , Central Nervous System/immunology , Dietary Fats/pharmacology , Duodenum/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Fatty Acids/pharmacology , Lymphopoiesis/drug effects , T-Lymphocyte Subsets/drug effects , Animals , Dietary Fats/toxicity , Duodenum/metabolism , Duodenum/microbiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fatty Acids/chemistry , Fatty Acids/toxicity , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/immunology , Lauric Acids/toxicity , Liver X Receptors , MAP Kinase Signaling System , Mice , Molecular Weight , Orphan Nuclear Receptors/biosynthesis , Orphan Nuclear Receptors/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Spleen/immunology , Spleen/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Transcriptome
3.
Nature ; 551(7682): 585-589, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29143823

ABSTRACT

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lactobacillus/drug effects , Lactobacillus/isolation & purification , Sodium Chloride/pharmacology , Th17 Cells/drug effects , Th17 Cells/immunology , Animals , Autoimmunity/drug effects , Blood Pressure/drug effects , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Feces/microbiology , Humans , Hypertension/chemically induced , Indoleacetic Acids/metabolism , Indoles/metabolism , Intestines/cytology , Intestines/drug effects , Intestines/immunology , Intestines/microbiology , Lactobacillus/immunology , Lymphocyte Activation/drug effects , Lymphocyte Count , Male , Mice , Pilot Projects , Sodium Chloride/administration & dosage , Symbiosis , Th17 Cells/cytology , Tryptophan/metabolism
4.
Circulation ; 139(11): 1407-1421, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30586752

ABSTRACT

BACKGROUND: Arterial hypertension and its organ sequelae show characteristics of T cell-mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study (Canakinumab Antiinflammatory Thrombosis Outcome Study) targeting interleukin-1ß demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays a pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFAs) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in 2 different mouse models of hypertensive cardiovascular damage. METHODS: To investigate the effect of SCFAs on hypertensive cardiac damage and atherosclerosis, wild-type NMRI or apolipoprotein E knockout-deficient mice received propionate (200 mmol/L) or control in the drinking water. To induce hypertension, wild-type NMRI mice were infused with angiotensin II (1.44 mg·kg-1·d-1 subcutaneous) for 14 days. To accelerate the development of atherosclerosis, apolipoprotein E knockout mice were infused with angiotensin II (0.72 mg·kg-1·d-1 subcutaneous) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell depletion using PC61 antibody was used to examine the mode of action of propionate. RESULTS: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated angiotensin II-infused wild-type NMRI mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated apolipoprotein E knockout-deficient mice. Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in wild-type NMRI mice. Cardioprotective effects of propionate were abrogated in regulatory T cell-depleted angiotensin II-infused mice, suggesting the effect is regulatory T cell-dependent. CONCLUSIONS: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial nonpharmacological preventive strategy for patients with hypertensive cardiovascular disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aortic Diseases/drug therapy , Arrhythmias, Cardiac/prevention & control , Atherosclerosis/drug therapy , Cardiomegaly/prevention & control , Hypertension/drug therapy , Propionates/pharmacology , Angiotensin II , Animals , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/physiopathology , Arterial Pressure/drug effects , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Cardiomegaly/immunology , Cardiomegaly/physiopathology , Disease Models, Animal , Hypertension/chemically induced , Hypertension/immunology , Hypertension/physiopathology , Male , Mice, Knockout, ApoE , Plaque, Atherosclerotic , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th17 Cells/drug effects , Th17 Cells/immunology
6.
Int J Mol Sci ; 20(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717334

ABSTRACT

CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16⁺ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16⁺ subset of maternal monocytes.


Subject(s)
Angiotensin II/metabolism , Cell Communication , Chemokine CX3CL1/genetics , Gene Expression Regulation , Monocytes/metabolism , Placenta/metabolism , Trophoblasts/metabolism , Adult , Cell Line , Chemokine CX3CL1/metabolism , Cytokines/metabolism , Female , Gene Expression Profiling , Gestational Age , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Pregnancy , RNA, Messenger , Transcriptome , Young Adult
7.
J Am Soc Nephrol ; 27(9): 2658-69, 2016 09.
Article in English | MEDLINE | ID: mdl-26823548

ABSTRACT

NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.


Subject(s)
Acute Kidney Injury/etiology , NF-kappa B/physiology , Animals , Apoptosis , Disease Models, Animal , Kidney Tubules , Male , Mice , Reperfusion Injury , Signal Transduction , Urothelium
8.
J Immunol ; 193(10): 5284-93, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25320278

ABSTRACT

Although the homing of lymphocytes to GALT has been extensively studied, little is known about how high endothelial venules (HEVs) within Peyer's patches (PPs) are patterned to display dominantly mucosal addressin cell adhesion molecule 1 (MAdCAM-1). In this study, we report that Nkx2-3-deficient mice show gradual loss of MAdCAM-1 in PPs postnatally and increased levels of mRNA for peripheral lymph node addressin (PNAd) backbone proteins as well as enhanced expression of MECA79 sulfated glycoepitope at the luminal aspect of HEVs, thus replacing MAdCAM-1 with PNAd. Induction of PNAd in mutant PPs requires lymphotoxin ß receptor activity, and its upregulation needs the presence of mature T and B cells. Furthermore, treatment with MECA-79 anti-PNAd mAb in vivo effectively blocks lymphocyte homing to mutant PPs. Despite the replacement of MAdCAM-1 by PNAd in HEV endothelia, lymphocytes could efficiently home to PPs in mutant mice. We conclude that although Nkx2-3 activity controls the addressin balance of HEVs in GALT, the general HEV functionality is preserved independently from Nkx2-3, indicating a substantial plasticity in the specification of GALT HEV endothelium.


Subject(s)
B-Lymphocytes/metabolism , Homeodomain Proteins/immunology , Peyer's Patches/metabolism , T-Lymphocytes/metabolism , Transcription Factors/immunology , Animals , Animals, Newborn , Antibodies, Monoclonal/pharmacology , Antigens, Surface/genetics , Antigens, Surface/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Gene Expression Regulation , Homeodomain Proteins/genetics , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Mucoproteins , Peyer's Patches/cytology , Peyer's Patches/immunology , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transcription Factors/deficiency , Transcription Factors/genetics , Venules/cytology , Venules/immunology , Venules/metabolism
9.
Biochim Biophys Acta ; 1842(7): 935-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24657811

ABSTRACT

AIMS: Oxidative stress and neurohumoral factors play important role in the development of hypertension-induced vascular remodeling, likely by disregulating kinase cascades and transcription factors. Oxidative stress activates poly(ADP-ribose)-polymerase (PARP-1), which promotes inflammation and cell death. We assumed that inhibition of PARP-1 reduces the hypertension-induced adverse vascular changes. This hypothesis was tested in spontaneously hypertensive rats (SHR). METHODS AND RESULTS: Ten-week-old male SHRs and wild-type rats received or not 5mg/kg/day L-2286 (a water-soluble PARP-inhibitor) for 32 weeks, then morphological and functional parameters were determined in their aortas. L-2286 did not affect the blood pressure in any of the animal groups measured with tail-cuff method. Arterial stiffness index increased in untreated SHRs compared to untreated Wistar rats, which was attenuated by L-2286 treatment. Electron and light microscopy of aortas showed prominent collagen deposition, elevation of oxidative stress markers and increased PARP activity in SHR, which were attenuated by PARP-inhibition. L-2286 treatment decreased also the hypertension-activated mitochondrial cell death pathway, characterized by the nuclear translocation of AIF. Hypertension activated all three branches of MAP-kinases. L-2286 attenuated these changes by inducing the expression of MAPK phosphatase-1 and by activating the cytoprotective PI-3-kinase/Akt pathway. Hypertension activated nuclear factor-kappaB, which was prevented by PARP-inhibition via activating its nuclear export. CONCLUSION: PARP-inhibition has significant vasoprotective effects against hypertension-induced vascular remodeling. Therefore, PARP-1 can be a novel therapeutic drug target for preventing hypertension-induced vascular remodeling in a group of patients, in whom lowering the blood pressure to optimal range is harmful or causes intolerable side effects.


Subject(s)
Hypertension/drug therapy , Piperidines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Quinazolines/pharmacology , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/physiopathology , Blood Pressure/drug effects , Cell Death/drug effects , Collagen/metabolism , Hypertension/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Signal Transduction/drug effects
10.
Apoptosis ; 19(7): 1080-98, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24722832

ABSTRACT

Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3ß (GSK-3ß) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3ß induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3ß. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3ß, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Endoplasmic Reticulum Stress , Tunicamycin/pharmacology , Animals , Cell Line , Cell Survival , Cyclic AMP Response Element-Binding Protein/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Microtubules/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Mutation , Organ Specificity , PC12 Cells , Rats
11.
Front Epidemiol ; 3: 1177752, 2023.
Article in English | MEDLINE | ID: mdl-38455928

ABSTRACT

In this paper, we introduce a novel model for parental decision-making about vaccinations against a childhood disease that spreads through a contact network. This model considers a bilayer network comprising two overlapping networks, which are either Erdos-Rényi (random) networks or Barabási-Albert networks. The model also employs a Bayesian aggregation rule for observational social learning on a social network. This new model encompasses other decision models, such as voting and DeGroot models, as special cases. Using our model, we demonstrate how certain levels of social learning about vaccination preferences can converge opinions, influencing vaccine uptake and ultimately disease spread. In addition, we explore how two different cultures of social learning affect the establishment of social norms of vaccination and the uptake of vaccines. In every scenario, the interplay between the dynamics of observational social learning and disease spread is influenced by the network's topology, along with vaccine safety and availability.

12.
Front Immunol ; 12: 701626, 2021.
Article in English | MEDLINE | ID: mdl-34140958

ABSTRACT

High-fat diets (HFD) are linked to obesity and associated comorbidities and induce pathogenic T helper (Th) 17 cells while decreasing regulatory T cells (Treg). This pro-inflammatory environment also aggravates immunopathology in experimental autoimmune encephalomyelitis (EAE) as a prototype model of T cell mediated autoimmunity. The strong association of HFD to obesity as well as the increasing risk of autoimmunity in the Western world stresses the importance to identify compounds that counteract this metabolically induced pro-inflammatory state in humans. One prominent candidate is the short-chain fatty acid propionate (PA) that was recently identified as potent therapy in the autoimmune disease multiple sclerosis by enhancing Treg cell frequencies and functionality. Mice were fed a HFD rich lauric acid (LA) and treated either with water or PA during MOG35-55-EAE. We analyzed Treg and Th17 cell frequencies in different tissues, antigen-specific cell proliferation and cytokine secretion, investigated Treg cell functionality by suppression assays and IL-10 signaling blockade and employed Western blotting to investigate the involvement of p38-MAPK signaling. Finally, we performed an explorative study in obese and non-obese MS patients, investigating fecal PA concentrations as well as peripheral Th17 and Treg frequencies before and after 90 days of daily PA intake. As compared to controls, mice on a HFD displayed a more severe course of EAE with enhanced demyelination and immune cell infiltration in the spinal cord. PA treatment prevented this disease enhancing effect of HFD by inhibiting Th17 mediated inflammatory processes in the gut and the spleen. Blocking experiments and signaling studies revealed p38-MAPK and IL-10 signaling as important targets linking the beneficial effects of PA treatment and reduced inflammation due to enhanced Treg frequency and functionality. An explorative study in a small group of MS patients revealed reduced PA concentrations in fecal samples of obese MS patients compared to the non-obese group, coinciding with increased Th17 but decreased Treg cells in obese patients. Importantly, PA intake could restore the Treg-Th17 homeostasis. Our data thus identify Th17 responses as an important target for the beneficial effects of PA in HFD and obesity in addition to the recently identified potential of PA as a Treg inducing therapy in T cell mediated autoimmunity.


Subject(s)
Autoimmunity/drug effects , Diet, High-Fat/adverse effects , Propionates/pharmacology , Th17 Cells/drug effects , Animals , Cell Proliferation/drug effects , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Humans , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism
13.
Cardiovasc Res ; 117(3): 863-875, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32374853

ABSTRACT

AIMS: Recent technical developments have allowed the study of the human microbiome to accelerate at an unprecedented pace. Methodological differences may have considerable impact on the results obtained. Thus, we investigated how different storage, isolation, and DNA extraction methods can influence the characterization of the intestinal microbiome, compared to the impact of true biological signals such as intraindividual variability, nutrition, health, and demographics. METHODS AND RESULTS: An observative cohort study in 27 healthy subjects was performed. Participants were instructed to collect stool samples twice spaced by a week, using six different methods (naive and Zymo DNA/RNA Shield on dry ice, OMNIgene GUT, RNALater, 95% ethanol, Zymo DNA/RNA Shield at room temperature). DNA extraction from all samples was performed comparatively using QIAamp Power Fecal and ZymoBIOMICS DNA Kits. 16S rRNA sequencing of the gut microbiota as well as qPCRs were performed on the isolated DNA. Metrics included alpha diversity as well as multivariate and univariate comparisons of samples, controlling for covariate patterns computationally. Interindividual differences explained 7.4% of overall microbiome variability, whereas the choice of DNA extraction method explained a further 5.7%. At phylum level, the tested kits differed in their recovery of Gram-positive bacteria, which is reflected in a significantly skewed enterotype distribution. CONCLUSION: DNA extraction methods had the highest impact on observed microbiome variability, and were comparable to interindividual differences, thus may spuriously mimic the microbiome signatures of various health and nutrition factors. Conversely, collection methods had a relatively small influence on microbiome composition. The present study provides necessary insight into the technical variables which can lead to divergent results from seemingly similar study designs. We anticipate that these results will contribute to future efforts towards standardization of microbiome quantification procedures in clinical research.


Subject(s)
Bacteria/isolation & purification , DNA, Bacterial/isolation & purification , Gastrointestinal Microbiome , Intestines/microbiology , RNA, Ribosomal, 16S/isolation & purification , Specimen Handling , Adult , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Feces/microbiology , Female , Germany , Healthy Volunteers , Humans , Male , Middle Aged , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Ribotyping
14.
Sci Rep ; 10(1): 17554, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067497

ABSTRACT

Caves offer selective pressures that are distinct from the surface. Organisms that have evolved to exist under these pressures typically exhibit a suite of convergent characteristics, including a loss or reduction of eyes and pigmentation. As a result, cave-obligate taxa, termed troglobionts, are no longer viable on the surface. This circumstance has led to an understanding of highly constrained dispersal capabilities, and the prediction that, in the absence of subterranean connections, extreme genetic divergence between cave populations. An effective test of this model would involve (1) common troglobionts from (2) nearby caves in a cave-dense region, (3) good sample sizes per cave, (4) multiple taxa, and (5) genome-wide characterization. With these criteria in mind, we used RAD-seq to genotype an average of ten individuals of the troglobiotic spider Nesticus barri and the troglobiotic beetle Ptomaphagus hatchi, each from four closely located caves (ranging from 3 to 13 km apart) in the cave-rich southern Cumberland Plateau of Tennessee, USA. Consistent with the hypothesis of highly restricted dispersal, we find that populations from separate caves are indeed highly genetically isolated. Our results support the idea of caves as natural laboratories for the study of parallel evolutionary processes.


Subject(s)
Caves , Coleoptera/genetics , Genetics, Population , Polymorphism, Single Nucleotide , Spiders/genetics , Animal Distribution , Animals , Evolution, Molecular , Gene Library , Genotype , Geography , Metagenomics , Phylogeny , Pigmentation , Tennessee
15.
Cardiovasc Res ; 116(5): 1059-1070, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31241148

ABSTRACT

AIMS: B-cell lymphoma/leukaemia 10 (Bcl10) is a member of the CARMA-Bcl10-MALT1 signalosome, linking angiotensin (Ang) II, and antigen-dependent immune-cell activation to nuclear factor kappa-B signalling. We showed earlier that Bcl10 plays a role in Ang II-induced cardiac fibrosis and remodelling, independent of blood pressure. We now investigated the role of Bcl10 in Ang II-induced renal damage. METHODS AND RESULTS: Bcl10 knockout mice (Bcl10 KO) and wild-type (WT) controls were given 1% NaCl in the drinking water and Ang II (1.44 mg/kg/day) for 14 days. Additionally, Bcl10 KO or WT kidneys were transplanted onto WT mice that were challenged by the same protocol for 7 days. Kidneys of Ang II-treated Bcl10 KO mice developed less fibrosis and showed fewer infiltrating cells. Nevertheless, neutrophil gelatinase-associated lipocalin (Ngal) and kidney injury molecule (Kim)1 expression was higher in the kidneys of Ang II-treated Bcl10 KO mice, indicating exacerbated tubular damage. Furthermore, albuminuria was significantly higher in Ang II-treated Bcl10 KO mice accompanied by reduced glomerular nephrin expression and podocyte number. Ang II-treated WT mice transplanted with Bcl10 KO kidney showed more albuminuria and renal Ngal, compared to WT- > WT kidney-transplanted mice, as well as lower podocyte number but similar fibrosis and cell infiltration. Interestingly, mice lacking Bcl10 in the kidney exhibited less Ang II-induced cardiac hypertrophy than controls. CONCLUSION: Bcl10 has multi-faceted actions in Ang II-induced renal damage. On the one hand, global Bcl10 deficiency ameliorates renal fibrosis and cell infiltration; on the other hand, lack of renal Bcl10 aggravates albuminuria and podocyte damage. These data suggest that Bcl10 maintains podocyte integrity and renal function.


Subject(s)
Acute Kidney Injury/metabolism , Angiotensin II , B-Cell CLL-Lymphoma 10 Protein/metabolism , Kidney/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Albuminuria/chemically induced , Albuminuria/genetics , Albuminuria/metabolism , Animals , B-Cell CLL-Lymphoma 10 Protein/deficiency , B-Cell CLL-Lymphoma 10 Protein/genetics , Cell Movement , Disease Models, Animal , Fibrosis , Hepatitis A Virus Cellular Receptor 1/metabolism , Kidney/pathology , Kidney Transplantation , Lipocalin-2/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Podocytes/metabolism , Podocytes/pathology , T-Lymphocyte Subsets/metabolism , Time Factors
16.
Nat Rev Nephrol ; 15(9): 546-558, 2019 09.
Article in English | MEDLINE | ID: mdl-31239546

ABSTRACT

Sodium intake is undoubtedly indispensable for normal body functions but can be detrimental when taken in excess of dietary requirements. The consequences of excessive salt intake are becoming increasingly clear as high salt consumption persists across the globe. Salt has long been suspected to promote the development of hypertension and cardiovascular diseases and is now also recognized as a potential modulator of inflammatory and autoimmune diseases through its direct and indirect effects on immune cells. The finding that, in addition to the kidneys, other organs such as the skin regulate sodium levels in the body prompted new hypotheses, including the concept that skin-resident macrophages might participate in tissue sodium regulation through their interactions with lymphatic vessels. Moreover, immune cells such as macrophages and different T cell subsets are found in sodium-rich interstitial microenvironments, where sodium levels modulate their function. Alterations to the intestinal bacterial community induced by excess dietary salt represent another relevant axis whereby salt indirectly modulates immune cell function. Depending on the inflammatory context, sodium might either contribute to protective immunity (for example, by enhancing host responses against cutaneous pathogens) or it might contribute to immune dysregulation and promote the development of cardiovascular and autoimmune diseases.


Subject(s)
Immunity, Cellular/physiology , Sodium/physiology , Animals , Humans , Hypertension/etiology , Hypertension/immunology , Immunity/physiology , Sodium/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/physiology
17.
Front Immunol ; 9: 2819, 2018.
Article in English | MEDLINE | ID: mdl-30555484

ABSTRACT

Background: Physical activity might attenuate inflammation and neurodegeneration in multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of intermittent hypoxic training on activity energy expenditure, maximal workload, serum erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T cells. Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both 3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before and after training, activity energy expenditure (metabolic chamber), maximal workload (incremental treadmill test), walking ability, depressive symptoms (Beck Depression Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral blood mononuclear cells (PBMCs) were assessed. Results: Energy expenditure did not change due to training in both groups, but was rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002). Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group, respectively (both P < 0.0001). Distance patients walked in 6 min increased by 25 m and 27 m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the frequency of CD39+ and CD31+ Tregs, respectively, and decreased IL-17A-producing CD4+ cells. HO training provoked none of these immunological changes. Erythropoietin concentrations were within normal range and did not significantly change in either group. Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness level and mood in MS patients, both under normoxic and hypoxic conditions. Additionally, NO training improved Th17/Treg profile and HO training improved fatty acid oxidation during exercise. These effects could not be attributed to an increase of erythropoietin. Clinical Trial Registration: ClinicalTrials.gov; NCT02509897; http://www.clinicaltrials.gov.


Subject(s)
Erythropoietin , Exercise Therapy , Hypoxia , Multiple Sclerosis , T-Lymphocytes, Regulatory , Th17 Cells , Adult , Erythropoietin/blood , Erythropoietin/immunology , Female , Humans , Hypoxia/blood , Hypoxia/immunology , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Multiple Sclerosis/psychology , Multiple Sclerosis/therapy , Pilot Projects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
18.
Sci Rep ; 8(1): 4878, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559678

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) cation channels are functional in all renal vascular segments and mediate endothelium-dependent vasorelaxation. Moreover, they are expressed in distinct parts of the tubular system and activated by cell swelling. Ischaemia/reperfusion injury (IRI) is characterized by tubular injury and endothelial dysfunction. Therefore, we hypothesised a putative organ protective role of TRPV4 in acute renal IRI. IRI was induced in TRPV4 deficient (Trpv4 KO) and wild-type (WT) control mice by clipping the left renal pedicle after right-sided nephrectomy. Serum creatinine level was higher in Trpv4 KO mice 6 and 24 hours after ischaemia compared to WT mice. Detailed histological analysis revealed that IRI caused aggravated renal tubular damage in Trpv4 KO mice, especially in the renal cortex. Immunohistological and functional assessment confirmed TRPV4 expression in proximal tubular cells. Furthermore, the tubular damage could be attributed to enhanced necrosis rather than apoptosis. Surprisingly, the percentage of infiltrating granulocytes and macrophages were comparable in IRI-damaged kidneys of Trpv4 KO and WT mice. The present results suggest a renoprotective role of TRPV4 during acute renal IRI. Further studies using cell-specific TRPV4 deficient mice are needed to clarify cellular mechanisms of TRPV4 in IRI.


Subject(s)
Kidney Tubules/metabolism , Reperfusion Injury/metabolism , TRPV Cation Channels/deficiency , Acute Kidney Injury/metabolism , Animals , Apoptosis , Disease Models, Animal , Ischemia/pathology , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Knockout , Reperfusion/methods , Reperfusion Injury/genetics , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
19.
JCI Insight ; 3(4)2018 02 22.
Article in English | MEDLINE | ID: mdl-29467337

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) can arise from cardiac and vascular remodeling processes following long-lasting hypertension. Efficacy of common HF therapeutics is unsatisfactory in HFpEF. Evidence suggests that stimulators of the nitric oxide-sensitive soluble guanylyl cyclase (NOsGC) could be of use here. We aimed to characterize the complex cardiovascular effects of NOsGC stimulation using NO-independent stimulator BAY 41-8543 in a double-transgenic rat (dTGR) model of HFpEF. We show a drastically improved survival rate of treated dTGR. We observed less cardiac fibrosis, macrophage infiltration, and gap junction remodeling in treated dTGR. Microarray analysis revealed that treatment of dTGR corrected the dysregulateion of cardiac genes associated with fibrosis, inflammation, apoptosis, oxidative stress, and ion channel function toward an expression profile similar to healthy controls. Treatment reduced systemic blood pressure levels and improved endothelium-dependent vasorelaxation of resistance vessels. Further comprehensive in vivo phenotyping showed an improved diastolic cardiac function, improved hemodynamics, and less susceptibility to ventricular arrhythmias. Short-term BAY 41-8543 application in isolated untreated transgenic hearts with structural remodeling significantly reduced the occurrence of ventricular arrhythmias, suggesting a direct nongenomic role of NOsGC stimulation on excitation. Thus, NOsGC stimulation was highly effective in improving several HFpEF facets in this animal model, underscoring its potential value for patients.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Heart Failure/drug therapy , Morpholines/therapeutic use , Pyrimidines/therapeutic use , Soluble Guanylyl Cyclase/metabolism , Administration, Oral , Angiotensinogen/genetics , Animals , Arrhythmias, Cardiac/etiology , Blood Pressure/drug effects , Chronic Disease/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Echocardiography , Heart Failure/complications , Heart Failure/genetics , Heart Failure/mortality , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Humans , Isolated Heart Preparation , Male , Morpholines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Transgenic , Renin/genetics , Stroke Volume/physiology , Survival Rate , Treatment Outcome
20.
Neuroscience ; 330: 335-58, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27282087

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in stress adaptation with potential relevance in mood disorder management. PACAP deficient (KO) mice on CD1 background were shown to have depression-like phenotype. Here we aimed at investigating effects of chronic variable mild stress (CVMS) in non-injected, vehicle and imipramine-treated KO mice vs. wildtype (WT) counterparts. We hypothesized reduced FosB neuronal activity in stress-related centers, altered activity and peptide/neurotransmitter content of corticotropin-releasing factor (CRF) cells of the oval (ovBST) bed nucleus of stria terminalis (BST), urocortin 1 (Ucn1) neurons of centrally projecting Edinger-Westphal nucleus (cpEW) and serotonin (5HT) cells of dorsal raphe (DR) in PACAP deficiency. CVMS caused decreased body weight and increased adrenal size, corticosterone (CORT) titers and depression-like behavior in WT mice, in contrast to KO animals. CVMS increased FosB in the central (CeA) and medial amygdala, dorsomedial (dmBST), ventral (vBST), ovBST, CA1 area, dentate gyrus (DG), ventral lateral septum, parvo- (pPVN) and magnocellular paraventricular nucleus, lateral periaqueductal gray, cpEW and DR. Lack of PACAP blunted the CVMS-induced FosB rise in the CeA, ovBST, dmBST, vBST, CA1 area, pPVN and DR. The CVMS-induced FosB expression in ovBST-CRF and cpEW-Ucn1 neurons was abolished in KO mice. Although CVMS did not induce FosB in 5HT-DR neurons, PACAP KO mice had increased 5HT cell counts and 5HT content. We conclude that PACAP deficiency affects neuronal reactivity in a brain area-specific manner in stress centers, as well as in ovBST-CRF, cpEW-Ucn1 and 5HT-DR neurons leading to reduced CVMS response and altered depression level.


Subject(s)
Brain Stem/metabolism , Limbic System/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Prosencephalon/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/metabolism , Animals , Antidepressive Agents, Tricyclic/pharmacology , Brain Stem/drug effects , Brain Stem/pathology , Chronic Disease , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Depressive Disorder/pathology , Disease Models, Animal , Imipramine/pharmacology , Limbic System/drug effects , Limbic System/pathology , Male , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Prosencephalon/drug effects , Prosencephalon/pathology , Serotonin/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/pathology
SELECTION OF CITATIONS
SEARCH DETAIL