Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell Mol Life Sci ; 80(6): 172, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261502

ABSTRACT

Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1ß (IL-1ß), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-ß protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1ß along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1ß signaling pathways in synaptic deficits leading to cognitive impairment.


Subject(s)
Alzheimer Disease , Herpes Simplex , Herpesvirus 1, Human , Mice , Animals , Herpesvirus 1, Human/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Neuroinflammatory Diseases , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Herpes Simplex/complications , Memory Disorders/genetics , Neuronal Plasticity/physiology , Epigenesis, Genetic , Hippocampus/metabolism , Disease Models, Animal , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism
2.
Aging Cell ; : e14291, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236310

ABSTRACT

Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL