Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nature ; 608(7924): 795-802, 2022 08.
Article in English | MEDLINE | ID: mdl-35978189

ABSTRACT

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Subject(s)
Carcinogenesis , Disease Progression , Genes, p53 , Genome , Loss of Heterozygosity , Pancreatic Neoplasms , Tumor Suppressor Protein p53 , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Evolution, Molecular , Gene Deletion , Genes, p53/genetics , Genome/genetics , Mice , Models, Genetic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
2.
Nature ; 606(7912): 172-179, 2022 06.
Article in English | MEDLINE | ID: mdl-35545680

ABSTRACT

Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.


Subject(s)
Carcinogenesis , Evolution, Molecular , Lung Neoplasms , Mutation , Carcinogenesis/genetics , Carcinogenesis/immunology , Datasets as Topic , Genes, p53 , Genetic Fitness , Genomics , Healthy Volunteers , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation/genetics , Mutation, Missense , Reproducibility of Results
3.
Nature ; 582(7810): 100-103, 2020 06.
Article in English | MEDLINE | ID: mdl-32461694

ABSTRACT

Cancers develop as a result of driver mutations1,2 that lead to clonal outgrowth and the evolution of disease3,4. The discovery and functional characterization of individual driver mutations are central aims of cancer research, and have elucidated myriad phenotypes5 and therapeutic vulnerabilities6. However, the serial genetic evolution of mutant cancer genes7,8 and the allelic context in which they arise is poorly understood in both common and rare cancer genes and tumour types. Here we find that nearly one in four human tumours contains a composite mutation of a cancer-associated gene, defined as two or more nonsynonymous somatic mutations in the same gene and tumour. Composite mutations are enriched in specific genes, have an elevated rate of use of less-common hotspot mutations acquired in a chronology driven in part by oncogenic fitness, and arise in an allelic configuration that reflects context-specific selective pressures. cis-acting composite mutations are hypermorphic in some genes in which dosage effects predominate (such as TERT), whereas they lead to selection of function in other genes (such as TP53). Collectively, composite mutations are driver alterations that arise from context- and allele-specific selective pressures that are dependent in part on gene and mutation function, and which lead to complex-often neomorphic-functions of biological and therapeutic importance.


Subject(s)
Carcinogenesis/genetics , Models, Genetic , Mutation , Neoplasms/genetics , Oncogenes/genetics , Alleles , Animals , Female , Genes, p53/genetics , Humans , Mice , Selection, Genetic , Telomerase/genetics
5.
Nature ; 571(7766): 576-579, 2019 07.
Article in English | MEDLINE | ID: mdl-31292550

ABSTRACT

Mutations in BRCA1 and BRCA2 predispose individuals to certain cancers1-3, and disease-specific screening and preventative strategies have reduced cancer mortality in affected patients4,5. These classical tumour-suppressor genes have tumorigenic effects associated with somatic biallelic inactivation, although haploinsufficiency may also promote the formation and progression of tumours6,7. Moreover, BRCA1/2-mutant tumours are often deficient in the repair of double-stranded DNA breaks by homologous recombination8-13, and consequently exhibit increased therapeutic sensitivity to platinum-containing therapy and inhibitors of poly-(ADP-ribose)-polymerase (PARP)14,15. However, the phenotypic and therapeutic relevance of mutations in BRCA1 or BRCA2 remains poorly defined in most cancer types. Here we show that in the 2.7% and 1.8% of patients with advanced-stage cancer and germline pathogenic or somatic loss-of-function alterations in BRCA1/2, respectively, selective pressure for biallelic inactivation, zygosity-dependent phenotype penetrance, and sensitivity to PARP inhibition were observed only in tumour types associated with increased heritable cancer risk in BRCA1/2 carriers (BRCA-associated cancer types). Conversely, among patients with non-BRCA-associated cancer types, most carriers of these BRCA1/2 mutation types had evidence for tumour pathogenesis that was independent of mutant BRCA1/2. Overall, mutant BRCA is an indispensable founding event for some tumours, but in a considerable proportion of other cancers, it appears to be biologically neutral-a difference predominantly conditioned by tumour lineage-with implications for disease pathogenesis, screening, design of clinical trials and therapeutic decision-making.


Subject(s)
Cell Lineage , Genes, BRCA1 , Genes, BRCA2 , Mutation , Neoplasms/genetics , Neoplasms/pathology , Phenotype , Alleles , Cohort Studies , Heterozygote , Humans , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Zygote
6.
Cancer ; 130(5): 692-701, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37864521

ABSTRACT

INTRODUCTION: Genetic ancestry (GA) refers to population hereditary patterns that contribute to phenotypic differences seen among race/ethnicity groups, and differences among GA groups may highlight unique biological determinants that add to our understanding of health care disparities. METHODS: A retrospective review of patients with renal cell carcinoma (RCC) was performed and correlated GA with clinicopathologic, somatic, and germline molecular data. All patients underwent next-generation sequencing of normal and tumor DNA using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets, and contribution of African (AFR), East Asian (EAS), European (EUR), Native American, and South Asian (SAS) ancestry was inferred through supervised ADMIXTURE. Molecular data was compared across GA groups by Fisher exact test and Kruskal-Wallis test. RESULTS: In 953 patients with RCC, the GA distribution was: EUR (78%), AFR (4.9%), EAS (2.5%), SAS (2%), Native American (0.2%), and Admixed (12.2%). GA distribution varied by tumor histology and international metastatic RCC database consortium disease risk status (intermediate-poor: EUR 58%, AFR 88%, EAS 74%, and SAS 73%). Pathogenic/likely pathogenic germline variants in cancer-predisposition genes varied (16% EUR, 23% AFR, 8% EAS, and 0% SAS), and most occurred in CHEK2 in EUR (3.1%) and FH in AFR (15.4%). In patients with clear cell RCC, somatic alteration incidence varied with significant enrichment in BAP1 alterations (EUR 17%, AFR 50%, SAS 29%; p = .01). Comparing AFR and EUR groups within The Cancer Genome Atlas, significant differences were identified in angiogenesis and inflammatory pathways. CONCLUSION: Differences in clinical and molecular data by GA highlight population-specific variations in patients with RCC. Exploration of both genetic and nongenetic variables remains critical to optimize efforts to overcome health-related disparities.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Ethnicity/genetics , Genetics, Population , Genomics
7.
Cancer ; 130(4): 576-587, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37886874

ABSTRACT

BACKGROUND: Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS: Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS: Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS: In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY: Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.


Subject(s)
Endometrial Neoplasms , Ethnicity , Racial Groups , Female , Humans , Endometrial Neoplasms/genetics , Germ Cells
9.
Cancer ; 128(21): 3870-3879, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36041233

ABSTRACT

BACKGROUND: Germline risk assessment is increasing as part of cancer care; however, disparities in subsequent genetic counseling are unknown. METHODS: Pan-cancer patients were prospectively consented to tumor-normal sequencing via custom next generation sequencing panel (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets) inclusive of germline analysis of ≥76 genes from January 2015 through December 2019 (97.5% research nonbillable) with protocol for genetics referral. Rates of pathogenic/likely pathogenic germline variants (PVs) and downstream counseling were compared across ancestry groups (mutually exclusive groups based on self-reported race/ethnicity and Ashkenazi Jewish [AJ] heritage) using nonparametric tests and multivariable logistic regression models. RESULTS: Among 15,775 patients (59.6%, non-Hispanic [NH]-White; 15.7%, AJ; 20.5%, non-White [6.9%, Asian; 6.8%, Black/African American (AA); 6.7%, Hispanic; 0.1%, Other], and 4.2%, unknown), 2663 (17%) had a PV. Non-White patients had a lower PV rate (n = 433, 13.4%) compared to NH-Whites (n = 1451, 15.4%) and AJ patients (n = 683, 27.6%), p < .01, with differences in mostly moderate and low/recessive/uncertain penetrance variants. Among 2239 patients with new PV, 1652 (73.8%) completed recommended genetic counseling. Non-White patients had lower rates of genetic counseling (67.7%) than NH-White (73.7%) and AJ patients (78.8%), p < .01, with lower rates occurring in Black/AA (63%) compared to NH-White patients, even after adjustment for confounders (odds ratio, 0.60; 95% confidence interval, 0.37-0.97; p = .036). Non-White, particularly Black/AA and Asian, probands had a trend toward lower rates and numbers of at-risk family members being seen for counseling/genetic testing. CONCLUSIONS: Despite minimizing barriers to genetic testing, non-White patients were less likely to receive recommended cancer genetics follow-up, with potential implications for oncologic care, cancer risk reduction, and at-risk family members. LAY SUMMARY: Genetic testing is becoming an important part of cancer care, and we wanted to see if genetics care was different between individuals of different backgrounds. We studied 15,775 diverse patients with cancer who had genetic testing using a test called MSK-IMPACT that was covered by research funding. Clinically important genetic findings were high in all groups. However, Black patients were less likely to get recommended counseling compared to White patients. Even after removing many roadblocks, non-White and especially Black patients were less likely to get recommended genetics care, which may affect their cancer treatments and families.


Subject(s)
Ethnicity , Neoplasms , Black People , Ethnicity/genetics , Germ Cells , Hispanic or Latino/genetics , Humans , Neoplasms/genetics
10.
Cancer ; 127(23): 4393-4402, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34351646

ABSTRACT

BACKGROUND: Patients with germline/somatic BRCA1/BRCA2 mutations (g/sBRCA1/2) comprise a distinct biologic subgroup of pancreas ductal adenocarcinoma (PDAC). METHODS: Institutional databases were queried to identify patients who had PDAC with g/sBRCA1/2. Demographics, clinicopathologic details, genomic data (annotation sBRCA1/2 according to a precision oncology knowledge base for somatic mutations), zygosity, and outcomes were abstracted. Overall survival (OS) was estimated using the Kaplan-Meier method. RESULTS: In total, 136 patients with g/sBRCA1/2 were identified between January 2011 and June 2020. Germline BRCA1/2 (gBRCA1/2) mutation was identified in 116 patients (85%). Oncogenic somatic BRCA1/2 (sBRCA1/2) mutation was present in 20 patients (15%). Seventy-seven patients had biallelic BRCA1/2 mutations (83%), and 16 (17%) had heterozygous mutations. Sixty-five patients with stage IV disease received frontline platinum therapy, and 52 (80%) had a partial response. The median OS for entire cohort was 27.6 months (95% CI, 24.9-34.5 months), and the median OS for patients who had stage IV disease was 23 months (95% CI, 19-26 months). Seventy-one patients received a poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor (PARPi), and 52 received PARPi monotherapy. For maintenance PARPi, 10 patients (36%) had a partial response, 12 (43%) had stable disease, and 6 (21%) had progression of disease as their best response. Six patients (21%) received maintenance PARPi for >2 years. For those with stage IV disease who received frontline platinum, the median OS was 26 months (95% CI, 20-52 months) for biallelic patients (n = 39) and 8.66 months (95% CI, 6.2 months to not reached) for heterozygous patients (n = 4). The median OS for those who received PARPi therapy was 26.5 months (95% CI, 24-53 months) for biallelic patients (n = 25) and 8.66 months (95% CI, 7.23 months to not reached) for heterozygous patients (n = 2). CONCLUSIONS: g/sBRCA1/2 mutations did not appear to have different actionable utility. Platinum and PARPi therapies offer therapeutic benefit, and very durable outcomes are observed in a subset of patients who have g/sBRCA1/2 mutations with biallelic status.


Subject(s)
Carcinoma, Pancreatic Ductal , Ovarian Neoplasms , Pancreatic Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Germ-Line Mutation , Humans , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Precision Medicine , Treatment Outcome
11.
PLoS Genet ; 13(3): e1006589, 2017 03.
Article in English | MEDLINE | ID: mdl-28263985

ABSTRACT

Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN) subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , 3' Untranslated Regions , Adult , Aged , Aged, 80 and over , Alternative Splicing , Cohort Studies , Estrogen Receptor alpha/genetics , Female , Gene Expression Profiling , Genome, Human , Humans , MCF-7 Cells , Middle Aged , Prognosis , Protein Isoforms/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
12.
Cancer ; 125(9): 1441-1448, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30620386

ABSTRACT

BACKGROUND: Ampullary carcinoma (AC) is a rare gastrointestinal cancer. Pathogenic germline alterations (PGAs) in BRCA2 and potentially targetable somatic alterations (SAs) in ERBB2 and ELF3 have been previously described in AC. Memorial Sloan Kettering Cancer Center has implemented an opt-in strategy for germline testing (GT) and somatic testing (ST) for patients with AC to further evaluate the spectrum of PGAs and SAs. METHODS: Forty-five patients with pathologically confirmed AC prospectively consented with the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) test (410-468 genes). A subset of the cohort (23 of the 45 patients) also consented to GT with MSK-IMPACT (76-88 genes). Germline data for 21 of the remaining 22 patients who had not consented to GT were obtained in a de-identified fashion without clinical correlation. Clinicopathologic features, treatment histories, and survival data for consenting patients were collected and analyzed. RESULTS: Pancreaticobiliary, intestinal, and mixed features of the 2 types were the primary pathologic subtypes of AC identified in this cohort. No difference in median overall survival was found between pathologic subtypes. Eight of 44 patients (18%) were identified as harboring pathogenic mutations in BRCA2, ATM, RAD50, and MUTYH. In addition, this study found a wide spectrum of SAs in genes such as KRAS, MDM2, ERBB2, ELF3, and PIK3CA. Two patients in the cohort underwent SA-targeted therapy, and 1 had a partial radiographic response. CONCLUSIONS: Mutations in multiple somatic and germline genes were identified in this cohort. Significantly, actionable targets were identified in the tumors, and broader testing for PGAs and SAs should be considered for all patients with AC.


Subject(s)
Ampulla of Vater/pathology , Common Bile Duct Neoplasms/diagnosis , Common Bile Duct Neoplasms/genetics , DNA Mutational Analysis/methods , Aged , Biomarkers, Tumor/genetics , Cohort Studies , Common Bile Duct Neoplasms/mortality , Common Bile Duct Neoplasms/pathology , Female , Genetic Predisposition to Disease , Germ-Line Mutation/physiology , Humans , Male , Microsatellite Repeats/genetics , Middle Aged , Mutation/physiology , Prognosis , Survival Analysis
13.
Blood ; 121(6): 975-83, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23212519

ABSTRACT

Loss of chromosome 7 and del(7q) [-7/del(7q)] are recurring cytogenetic abnormalities in hematologic malignancies, including acute myeloid leukemia and therapy-related myeloid neoplasms, and associated with an adverse prognosis. Despite intensive effort by many laboratories, the putative myeloid tumor suppressor(s) on chromosome 7 has not yet been identified.We performed transcriptome sequencing and SNP array analysis on de novo and therapy-related myeloid neoplasms, half with -7/del(7q). We identified a 2.17-Mb commonly deleted segment on chromosome band 7q22.1 containing CUX1, a gene encoding a homeodomain-containing transcription factor. In 1 case, CUX1 was disrupted by a translocation, resulting in a loss-of-function RNA fusion transcript. CUX1 was the most significantly differentially expressed gene within the commonly deleted segment and was expressed at haploinsufficient levels in -7/del(7q) leukemias. Haploinsufficiency of the highly conserved ortholog, cut, led to hemocyte overgrowth and tumor formation in Drosophila melanogaster. Similarly, haploinsufficiency of CUX1 gave human hematopoietic cells a significant engraftment advantage on transplantation into immunodeficient mice. Within the RNA-sequencing data, we identified a CUX1-associated cell cycle transcriptional gene signature, suggesting that CUX1 exerts tumor suppressor activity by regulating proliferative genes. These data identify CUX1 as a conserved, haploinsufficient tumor suppressor frequently deleted in myeloid neoplasms.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , Homeodomain Proteins/genetics , Leukemia, Myeloid/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Acute Disease , Animals , Blotting, Western , Cell Line, Tumor , Drosophila melanogaster/genetics , Gene Expression Profiling , Haploinsufficiency , HeLa Cells , Homeodomain Proteins/metabolism , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , K562 Cells , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nuclear Proteins/metabolism , RNA Interference , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors , Translocation, Genetic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , U937 Cells , Xenograft Model Antitumor Assays
14.
NPJ Precis Oncol ; 7(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593350

ABSTRACT

Traditional genetic testing for patients with gastrointestinal stromal tumors (GISTs) focus on those with syndromic features. To assess whether expanded genetic testing of GIST patients could identify hereditary cancer predisposition, we analyzed matched tumor-germline sequencing results from 103 patients with GISTs over a 6-year period. Germline pathogenic/likely pathogenic (P/LP) variants in GIST-associated genes (SDHA, SDHB, SDHC, NF1, KIT) were identified in 69% of patients with KIT/PDGFRA-wildtype GISTs, 63% of whom did not have any personal or family history of syndromic features. To evaluate the frequency of somatic versus germline variants identified in tumor-only sequencing of GISTs, we analyzed 499 de-identified tumor-normal pairs. P/LP variants in certain genes (e.g., BRCA1/2, SDHB) identified in tumor-only sequencing of GISTs were almost exclusively germline in origin. Our results provide guidance for genetic testing of GIST patients and indicate that germline testing should be offered to all patients with KIT/PDGFRA-wildtype GISTs regardless of their history of syndromic features.

15.
Clin Cancer Res ; 29(2): 422-431, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36346689

ABSTRACT

PURPOSE: To explore the role of NBN as a pan-cancer susceptibility gene. EXPERIMENTAL DESIGN: Matched germline and somatic DNA samples from 34,046 patients were sequenced using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and presumed pathogenic germline variants (PGV) identified. Allele-specific and gene-centered analysis of enrichment was conducted and a validation cohort of 26,407 pan-cancer patients was analyzed. Functional studies utilized cellular models with analysis of protein expression, MRN complex formation/localization, and viability assessment following treatment with γ-irradiation. RESULTS: We identified 83 carriers of 32 NBN PGVs (0.25% of the studied series), 40% of which (33/83) carried the Slavic founder p.K219fs. The frequency of PGVs varied across cancer types. Patients harboring NBN PGVs demonstrated increased loss of the wild-type allele in their tumors [OR = 2.7; confidence interval (CI): 1.4-5.5; P = 0.0024; pan-cancer], including lung and pancreatic tumors compared with breast and colorectal cancers. p.K219fs was enriched across all tumor types (OR = 2.22; CI: 1.3-3.6; P = 0.0018). Gene-centered analysis revealed enrichment of PGVs in cases compared with controls in the European population (OR = 1.9; CI: 1.3-2.7; P = 0.0004), a finding confirmed in the replication cohort (OR = 1.8; CI: 1.2-2.6; P = 0.003). Two novel truncating variants, p.L19* and p.N71fs, produced a 45 kDa fragment generated by alternative translation initiation that maintained binding to MRE11. Cells expressing these fragments showed higher sensitivity to γ-irradiation and lower levels of radiation-induced KAP1 phosphorylation. CONCLUSIONS: Burden analyses, biallelic inactivation, and functional evidence support the role of NBN as contributing to a broad cancer spectrum. Further studies in large pan-cancer series and the assessment of epistatic and environmental interactions are warranted to further define these associations.


Subject(s)
Germ-Line Mutation , Pancreatic Neoplasms , Humans , Mutation , Pancreatic Neoplasms/pathology , Germ Cells , DNA Damage/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics
16.
JCO Precis Oncol ; 7: e2300070, 2023 08.
Article in English | MEDLINE | ID: mdl-37561983

ABSTRACT

PURPOSE: Clonal hematopoiesis (CH), the expansion of clones in the hematopoietic system, has been linked to different internal and external features such as aging, genetic ancestry, smoking, and oncologic treatment. However, the interplay between mutations in known cancer predisposition genes and CH has not been thoroughly examined in patients with solid tumors. METHODS: We used prospective tumor-blood paired sequencing data from 46,906 patients who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) testing to interrogate the associations between CH and rare pathogenic or likely pathogenic (P/LP) germline variants. RESULTS: We observed an enrichment of CH-positive patients among those carrying P/LP germline mutations and identified a significant association between P/LP germline variants in ATM and CH. Germline and CH comutation patterns in ATM, TP53, and CHEK2 suggested biallelic inactivation as a potential mediator of clonal expansion. Moreover, we observed that CH-PPM1D mutations, similar to somatic tumor-associated PPM1D mutations, were depleted in patients with P/LP germline mutations in the DNA damage response (DDR) genes ATM, CHEK2, and TP53. Patients with solid tumors and harboring P/LP germline mutations, CH mutations, and mosaicism chromosomal alterations might be at an increased risk of developing secondary leukemia while germline variants in TP53 were identified as an independent risk factor (hazard ratio, 36; P < .001) for secondary leukemias. CONCLUSION: Our results suggest a close relationship between inherited variants and CH mutations within the DDR genes in patients with solid tumors. Associations identified in this study might translate into enhanced clinical surveillance for CH and associated comorbidities in patients with cancer harboring these germline mutations.


Subject(s)
Clonal Hematopoiesis , Neoplasms , Humans , Prospective Studies , Neoplasms/genetics , Mutation/genetics , Germ-Line Mutation/genetics
17.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168194

ABSTRACT

Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary: Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.

18.
Nat Med ; 29(10): 2458-2463, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37845474

ABSTRACT

Metastatic and localized mismatch repair-deficient (dMMR) tumors are exquisitely sensitive to immune checkpoint blockade (ICB). The ability of ICB to prevent dMMR malignant or pre-malignant neoplasia development in patients with Lynch syndrome (LS) is unknown. Of 172 cancer-affected patients with LS who had received ≥1 ICB cycles, 21 (12%) developed subsequent malignancies after ICB exposure, 91% (29/32) of which were dMMR, with median time to development of 21 months (interquartile range, 6-38). Twenty-four of 61 (39%) ICB-treated patients who subsequently underwent surveillance colonoscopy had premalignant polyps. Within matched pre-ICB and post-ICB follow-up periods, the overall rate of tumor development was unchanged; however, on subgroup analysis, a decreased incidence of post-ICB visceral tumors was observed. These data suggest that ICB treatment of LS-associated tumors does not eliminate risk of new neoplasia development, and LS-specific surveillance strategies should continue. These data have implications for immunopreventative strategies and provide insight into the immunobiology of dMMR tumors.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Immune Checkpoint Inhibitors , Colorectal Neoplasms/pathology
19.
Clin Cancer Res ; 29(21): 4408-4418, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37432985

ABSTRACT

PURPOSE: We sought to identify features of patients with advanced non-small cell lung cancer (NSCLC) who achieve long-term response (LTR) to immune checkpoint inhibitors (ICI), and how these might differ from features predictive of short-term response (STR). EXPERIMENTAL DESIGN: We performed a multicenter retrospective analysis of patients with advanced NSCLC treated with ICIs between 2011 and 2022. LTR and STR were defined as response ≥ 24 months and response < 12 months, respectively. Tumor programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), next-generation sequencing (NGS), and whole-exome sequencing (WES) data were analyzed to identify characteristics enriched in patients achieving LTR compared with STR and non-LTR. RESULTS: Among 3,118 patients, 8% achieved LTR and 7% achieved STR, with 5-year overall survival (OS) of 81% and 18% among LTR and STR patients, respectively. High TMB (≥50th percentile) enriched for LTR compared with STR (P = 0.001) and non-LTR (P < 0.001). Whereas PD-L1 ≥ 50% enriched for LTR compared with non-LTR (P < 0.001), PD-L1 ≥ 50% did not enrich for LTR compared with STR (P = 0.181). Nonsquamous histology (P = 0.040) and increasing depth of response [median best overall response (BOR) -65% vs. -46%, P < 0.001] also associated with LTR compared with STR; no individual genomic alterations were uniquely enriched among LTR patients. CONCLUSIONS: Among patients with advanced NSCLC treated with ICIs, distinct features including high TMB, nonsquamous histology, and depth of radiographic improvement distinguish patients poised to achieve LTR compared with initial response followed by progression, whereas high PD-L1 does not.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen , Retrospective Studies , Antineoplastic Agents, Immunological/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use
20.
Clin Cancer Res ; 29(13): 2540-2550, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37097610

ABSTRACT

PURPOSE: ATM is the most commonly mutated DNA damage and repair gene in non-small cell lung cancer (NSCLC); however, limited characterization has been pursued. EXPERIMENTAL DESIGN: Clinicopathologic, genomic, and treatment data were collected for 5,172 patients with NSCLC tumors which underwent genomic profiling. ATM IHC was performed on 182 NSCLCs with ATM mutations. Multiplexed immunofluorescence was performed on a subset of 535 samples to examine tumor-infiltrating immune cell subsets. RESULTS: A total of 562 deleterious ATM mutations were identified in 9.7% of NSCLC samples. ATM-mutant (ATMMUT) NSCLC was significantly associated with female sex (P = 0.02), ever smoking status (P < 0.001), non-squamous histology (P = 0.004), and higher tumor mutational burden (DFCI, P < 0.0001; MSK, P < 0.0001) compared with ATM-wild-type (ATMWT) cases. Among 3,687 NSCLCs with comprehensive genomic profiling, co-occurring KRAS, STK11, and ARID2 oncogenic mutations were significantly enriched among ATMMUT NSCLCs (Q < 0.05), while TP53 and EGFR mutations were enriched in ATMWT NSCLCs. Among 182 ATMMUT samples with ATM IHC, tumors with nonsense, insertions/deletions, or splice site mutations were significantly more likely to display ATM loss by IHC (71.4% vs. 28.6%; P < 0.0001) compared with tumors with only predicted pathogenic missense mutations. Clinical outcomes to PD-(L)1 monotherapy (N = 1,522) and chemo-immunotherapy (N = 951) were similar between ATMMUT and ATMWT NSCLCs. Patients with concurrent ATM/TP53 mutations had significantly improved response rate and progression-free survival with PD-(L)1 monotherapy. CONCLUSIONS: Deleterious ATM mutations defined a subset of NSCLC with unique clinicopathologic, genomic, and immunophenotypic features. Our data may serve as resource to guide interpretation of specific ATM mutations in NSCLC.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Genomics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL