Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
2.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36882008

ABSTRACT

MOTIVATION: With the rapid development of modern technologies, massive data are available for the systematic study of Alzheimer's disease (AD). Though many existing AD studies mainly focus on single-modality omics data, multi-omics datasets can provide a more comprehensive understanding of AD. To bridge this gap, we proposed a novel structural Bayesian factor analysis framework (SBFA) to extract the information shared by multi-omics data through the aggregation of genotyping data, gene expression data, neuroimaging phenotypes and prior biological network knowledge. Our approach can extract common information shared by different modalities and encourage biologically related features to be selected, guiding future AD research in a biologically meaningful way. METHOD: Our SBFA model decomposes the mean parameters of the data into a sparse factor loading matrix and a factor matrix, where the factor matrix represents the common information extracted from multi-omics and imaging data. Our framework is designed to incorporate prior biological network information. Our simulation study demonstrated that our proposed SBFA framework could achieve the best performance compared with the other state-of-the-art factor-analysis-based integrative analysis methods. RESULTS: We apply our proposed SBFA model together with several state-of-the-art factor analysis models to extract the latent common information from genotyping, gene expression and brain imaging data simultaneously from the ADNI biobank database. The latent information is then used to predict the functional activities questionnaire score, an important measurement for diagnosis of AD quantifying subjects' abilities in daily life. Our SBFA model shows the best prediction performance compared with the other factor analysis models. AVAILABILITY: Code are publicly available at https://github.com/JingxuanBao/SBFA. CONTACT: qlong@upenn.edu.


Subject(s)
Multiomics , Neuroimaging , Bayes Theorem , Neuroimaging/methods , Brain/diagnostic imaging , Phenotype
3.
Methods ; 218: 27-38, 2023 10.
Article in English | MEDLINE | ID: mdl-37507059

ABSTRACT

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Neuroimaging/methods , Canonical Correlation Analysis , Algorithms , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain , Magnetic Resonance Imaging
4.
Neuroimage ; 280: 120346, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37634885

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Bayes Theorem , Genome-Wide Association Study , Transcriptome , Brain/diagnostic imaging , Entorhinal Cortex
5.
BMC Bioinformatics ; 23(Suppl 3): 398, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171548

ABSTRACT

BACKGROUND: Brain volume has been widely studied in the neuroimaging field, since it is an important and heritable trait associated with brain development, aging and various neurological and psychiatric disorders. Genome-wide association studies (GWAS) have successfully identified numerous associations between genetic variants such as single nucleotide polymorphisms and complex traits like brain volume. However, it is unclear how these genetic variations influence regional gene expression levels, which may subsequently lead to phenotypic changes. S-PrediXcan is a tissue-specific transcriptomic data analysis method that can be applied to bridge this gap. In this work, we perform an S-PrediXcan analysis on GWAS summary data from two large imaging genetics initiatives, the UK Biobank and Enhancing Neuroimaging Genetics through Meta Analysis, to identify tissue-specific transcriptomic effects on two closely related brain volume measures: total brain volume (TBV) and intracranial volume (ICV). RESULTS: As a result of the analysis, we identified 10 genes that are highly associated with both TBV and ICV. Nine out of 10 genes were found to be associated with TBV in another study using a different gene-based association analysis. Moreover, most of our discovered genes were also found to be correlated with multiple cognitive and behavioral traits. Further analyses revealed the protein-protein interactions, associated molecular pathways and biological functions that offer insight into how these genes function and interact with others. CONCLUSIONS: These results confirm that S-PrediXcan can identify genes with tissue-specific transcriptomic effects on complex traits. The analysis also suggested novel genes whose expression levels are related to brain volumetric traits. This provides important insights into the genetic mechanisms of the human brain.


Subject(s)
Genome-Wide Association Study , Transcriptome , Brain/diagnostic imaging , Genome-Wide Association Study/methods , Humans , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide
6.
Article in English | MEDLINE | ID: mdl-38584725

ABSTRACT

We introduce an informative metric, called morphometric correlation, as a measure of shared neuroanatomic similarity between two cognitive traits. Traditional estimates of trait correlations can be confounded by factors beyond brain morphology. To exclude these confounding factors, we adopt a Gaussian kernel to measure the morphological similarity between individuals and compare pure neuroanatomic correlations among cognitive traits. In our empirical study, we employ a multiscale strategy. Given a set of cognitive traits, we first perform morphometric correlation analysis for each pair of traits to reveal their shared neuroanatomic correlation at the whole brain (or global) level. After that, we extend our whole brain concept to regional morphometric correlation and estimate shared neuroanatomic similarity between two cognitive traits at the regional (or local) level. Our results demonstrate that morphometric correlation can provide insights into shared neuroanatomic architecture between cognitive traits. Furthermore, we also estimate the morphometricity of each cognitive trait at both global and local levels, which can be used to better understand how neuroanatomic changes influence individuals' cognitive status.

7.
AMIA Jt Summits Transl Sci Proc ; 2024: 344-353, 2024.
Article in English | MEDLINE | ID: mdl-38827096

ABSTRACT

Neurodegenerative processes are increasingly recognized as potential causative factors in Alzheimer's disease (AD) pathogenesis. While many studies have leveraged mediation analysis models to elucidate the underlying mechanisms linking genetic variants to AD diagnostic outcomes, the majority have predominantly focused on regional brain measure as a mediator, thereby compromising the granularity of the imaging data. In our investigation, using the imaging genetics data from a landmark AD cohort, we contrasted both region-based and voxel-based brain measurements as imaging endophenotypes, and examined their roles in mediating genetic effects on AD outcomes. Our findings underscored that using voxel-based morphometry offers enhanced statistical power. Moreover, we delineated specific mediation pathways between SNP, brain volume, and AD outcomes, shedding light on the intricate relationship among these variables.

8.
Annu Rev Biomed Data Sci ; 7(1): 391-418, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848574

ABSTRACT

Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.


Subject(s)
Alzheimer Disease , Biomarkers , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Humans , Biomarkers/metabolism , Genomics/methods , Biomedical Research/methods , Multiomics
9.
Article in English | MEDLINE | ID: mdl-39371474

ABSTRACT

Morphometricity examines the global statistical association between brain morphology and an observable trait, and is defined as the proportion of the trait variation attributable to brain morphology. In this work, we propose an accurate morphometricity estimator based on the generalized random effects (GRE) model, and perform morphometricity analyses on five cognitive traits in an Alzheimer's study. Our empirical study shows that the proposed GRE model outperforms the widely used LME model on both simulation and real data. In addition, we extend morphometricity estimation from the whole brain to the focal-brain level, and examine and quantify both global and regional neuroanatomical signatures of the cognitive traits. Our global analysis reveals 1) a relatively strong anatomical basis for ADAS13, 2) intermediate ones for MMSE, CDRSB and FAQ, and 3) a relatively weak one for RAVLT.learning. The top associations identified from our regional morphometricity analysis include those between all five cognitive traits and multiple regions such as hippocampus, amygdala, and inferior lateral ventricles. As expected, the identified regional associations are weaker than the global ones. While the whole brain analysis is more powerful in identifying higher morphometricity, the regional analysis could localize the neuroanatomical signatures of the studied cognitive traits and thus provide valuable information in imaging and cognitive biomarker discovery for normal and/or disordered brain research.

10.
medRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883759

ABSTRACT

The UK Biobank (UKB) imaging project is a crucial resource for biomedical research, but is limited to 100,000 participants due to cost and accessibility barriers. Here we used genetic data to predict heritable imaging-derived phenotypes (IDPs) for a larger cohort. We developed and evaluated 4,375 IDP genetic scores (IGS) derived from UKB brain and body images. When applied to UKB participants who were not imaged, IGS revealed links to numerous phenotypes and stratified participants at increased risk for both brain and somatic diseases. For example, IGS identified individuals at higher risk for Alzheimer's disease and multiple sclerosis, offering additional insights beyond traditional polygenic risk scores of these diseases. When applied to independent external cohorts, IGS also stratified those at high disease risk in the All of Us Research Program and the Alzheimer's Disease Neuroimaging Initiative study. Our results demonstrate that, while the UKB imaging cohort is largely healthy and may not be the most enriched for disease risk management, it holds immense potential for stratifying the risk of various brain and body diseases in broader external genetic cohorts.

11.
Med Image Anal ; 97: 103231, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38941858

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Humans , Cluster Analysis , Aged , Female , Survival Analysis , Male , Algorithms
12.
ArXiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38979488

ABSTRACT

In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects' functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of the partition. Another practice that goes unchallenged is thresholding weighted FCs to remove spurious connections without justifying the chosen threshold. This paper leverages recent theoretical advances in Stochastic Block Models (SBMs) to formally define and quantify the information-theoretic fitness (e.g., prominence) of a predetermined set of FNs when mapped to individual FCs under different fMRI task conditions. Our framework allows for evaluating any combination of FC granularity, FN partition, and thresholding strategy, thereby optimizing these choices to preserve important topological features of the human brain connectomes. By applying to the Human Connectome Project with Schaefer parcellations at multiple levels of granularity, the framework showed that the common thresholding value of 0.25 was indeed information-theoretically valid for group-average FCs despite its previous lack of justification. Our results pave the way for the proper use of FNs and thresholding methods and provide insights for future research in individualized parcellations.

13.
Fertil Steril ; 122(3): 482-493, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38677710

ABSTRACT

OBJECTIVE: To evaluate combinations of candidate biomarkers to develop a multiplexed prediction model for identifying the viability and location of an early pregnancy. In this study, we assessed 24 biomarkers with multiple machine learning-based methodologies to assess if multiplexed biomarkers may improve the diagnosis of normal and abnormal early pregnancies. DESIGN: A nested case-control design evaluated the predictive ability and discrimination of biomarkers in patients at risk of early pregnancy failure in the first trimester to classify viability and location. SETTING: Three university hospitals. PATIENTS: A total of 218 individuals with pain and/or bleeding in early pregnancy: 75 had an ongoing intrauterine gestation; 68 had ectopic pregnancies (EPs); and 75 had miscarriages. INTERVENTIONS: Serum levels of 24 biomarkers were assessed in the same patients. Multiple machine learning-based methodologies to evaluate combinations of these top candidates to develop a multiplexed prediction model for the identification of a nonviable pregnancy (ongoing intrauterine pregnancy vs. miscarriage or EP) and an EP (EP vs. ongoing intrauterine pregnancy or miscarriage). MAIN OUTCOME MEASURES: The predicted classification using each model was compared with the actual diagnosis, and sensitivity, specificity, positive predictive value, negative predictive value, conclusive classification, and accuracy were calculated. RESULTS: Models using classification regression tree analysis using 3 (pregnancy-specific beta-1-glycoprotein 3 [PSG3], chorionic gonadotropin-alpha subunit, and pregnancy-associated plasma protein-A) biomarkers were able to predict a maximum sensitivity of 93.3% and a maximum specificity of 98.6%. The model with the highest accuracy was 97.4% (with 70.2% receiving classification). Models using an overlapping group of 3 (soluble fms-like tyrosine kinase-1, PSG3, and tissue factor pathway inhibitor 2) biomarkers achieved a maximum sensitivity of 98.5% and a maximum specificity of 95.3%. The model with the highest accuracy was 94.4% (with 65.6% receiving classification). When the models were used simultaneously, the conclusive classification increased to 72.7% with an accuracy of 95.9%. The predictive ability of the biomarkers in the random forest produced similar test characteristics when using 11 predictive biomarkers. CONCLUSION: We have demonstrated a pool of biomarkers from divergent biological pathways that can be used to classify individuals with potential early pregnancy loss. The biomarkers choriogonadotropin alpha, pregnancy-associated plasma protein-A, and PSG3 can be used to predict viability, and soluble fms-like tyrosine kinase-1, tissue factor pathway inhibitor 2, and PSG3 can be used to predict pregnancy location.


Subject(s)
Abortion, Spontaneous , Biomarkers , Machine Learning , Predictive Value of Tests , Pregnancy, Ectopic , Humans , Female , Pregnancy , Pregnancy, Ectopic/blood , Pregnancy, Ectopic/diagnosis , Biomarkers/blood , Case-Control Studies , Adult , Abortion, Spontaneous/blood , Abortion, Spontaneous/diagnosis , Diagnosis, Differential , Pregnancy Trimester, First/blood , Reproducibility of Results
14.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766268

ABSTRACT

Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.

15.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521789

ABSTRACT

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Humans , Brain , Gray Matter , Magnetic Resonance Imaging/methods , White Matter/physiology , Mendelian Randomization Analysis
16.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191573

ABSTRACT

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Endophenotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cluster Analysis
17.
Transl Psychiatry ; 14(1): 420, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39368996

ABSTRACT

Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .


Subject(s)
Alzheimer Disease , Atrophy , Cognitive Dysfunction , Genome-Wide Association Study , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Male , Female , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Aged , Brain/pathology , Magnetic Resonance Imaging , Temporal Lobe/pathology , Aged, 80 and over , Apolipoprotein E4/genetics , Middle Aged
18.
AMIA Jt Summits Transl Sci Proc ; 2023: 525-533, 2023.
Article in English | MEDLINE | ID: mdl-37350880

ABSTRACT

Amyloid imaging has been widely used in Alzheimer's disease (AD) diagnosis and biomarker discovery through detecting the regional amyloid plaque density. It is essential to be normalized by a reference region to reduce noise and artifacts. To explore an optimal normalization strategy, we employ an automated machine learning (AutoML) pipeline, STREAMLINE, to conduct the AD diagnosis binary classification and perform permutation-based feature importance analysis with thirteen machine learning models. In this work, we perform a comparative study to evaluate the prediction performance and biomarker discovery capability of three amyloid imaging measures, including one original measure and two normalized measures using two reference regions (i.e., the whole cerebellum and the composite reference region). Our AutoML results indicate that the composite reference region normalization dataset yields a higher balanced accuracy, and identifies more AD-related regions based on the fractioned feature importance ranking.

19.
AMIA Jt Summits Transl Sci Proc ; 2023: 544-553, 2023.
Article in English | MEDLINE | ID: mdl-37350896

ABSTRACT

STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.

20.
Front Aging Neurosci ; 15: 1281748, 2023.
Article in English | MEDLINE | ID: mdl-37953885

ABSTRACT

Introduction: Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk score for AD, to better predict risk of disease by using an optimized list of relevant genetic risk factors. Methods: Using whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 1,545), we selected 20 genes that exhibited the strongest correlations with FDG-PET and AV45-PET, recognized neuroimaging biomarkers that detect functional brain changes in AD. This subset of genes was incorporated into adORS to assess, in comparison to PRS, the prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk stratification of the ADNI cohort, and interpretability of the genetic information included in the scores. Results: adORS improved AUC scores over PRS in both CN vs. AD classification and MCI conversion prediction. The oligogenic model also refined risk-based stratification, even without the assistance of APOE, thus reflecting the true prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and CD46, have been observed in similar neurodegenerative disorders and/or are supported by AD-related literature. Discussion: Compared to conventional PRS, adORS may prove to be a more appropriate choice of differentiating patients into high or low genetic risk of AD in clinical studies or settings. Additionally, the ability to interpret specific genetic information allows the focus to be shifted from general relative risk based on a given population to the information that adORS can provide for a single individual, thus permitting the possibility of personalized treatments for AD.

SELECTION OF CITATIONS
SEARCH DETAIL