Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35065709

ABSTRACT

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Subject(s)
Genetic Diseases, Inborn/genetics , RNA Splicing , RNA, Messenger/genetics , Sequence Analysis, RNA/statistics & numerical data , Software , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Blood Cells/metabolism , Blood Cells/pathology , Cell Line , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Genetic Variation , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA, Messenger/metabolism , Research Design , Exome Sequencing/statistics & numerical data
2.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35675825

ABSTRACT

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Subject(s)
Neurodevelopmental Disorders , Receptors, AMPA , Cohort Studies , Heterozygote , Humans , Mutation, Missense , Neurodevelopmental Disorders/genetics , Receptors, AMPA/genetics
3.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35202563

ABSTRACT

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Subject(s)
Histones , Zebrafish , Animals , Chromatin , DNA , Histones/metabolism , Humans , Syndrome , Zebrafish/genetics , Zebrafish/metabolism
4.
J Med Genet ; 61(3): 294-297, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38123999

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis overlaps aetiologically and genetically with frontotemporal dementia and occurs in both familial and apparently sporadic forms. The most commonly implicated genes are C9orf72, SOD1, TARDBP and FUS. Penetrance of disease-causing variants in these genes is known to be incomplete, but has not been well studied at population level. OBJECTIVE: We sought to determine the population-level penetrance of pathogenic and likely pathogenic variants in genes commonly causing amyotrophic lateral sclerosis. METHODS: Published epidemiological data for amyotrophic lateral sclerosis and frontotemporal dementia were used to calculate expected frequencies of disease-causing variants per gene at population level. Variant data from gnomAD and ClinVar databases were used to ascertain observed numbers of disease-causing variants and to estimate population-level penetrance per gene. Data for C9orf72 were obtained from the published literature. RESULTS: Maximum population penetrance for either amyotrophic lateral sclerosis or frontotemporal dementia was found to be 33% for C9orf72 (95% CI (20.9 to 53.2)), 54% for SOD1 (95% CI (32.7 to 88.6)), 38% for TARDBP (95% CI (21.1 to 69.8)) and 19% for FUS (95% CI (13.0 to 28.4)). CONCLUSION: Population-level penetrance of amyotrophic lateral sclerosis disease genes is reduced. This finding has implications for the genetic testing and counselling of affected individuals and their unaffected relatives.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/genetics , C9orf72 Protein/genetics , Penetrance , Superoxide Dismutase-1/genetics
5.
Hum Genet ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170232

ABSTRACT

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

6.
Genet Med ; 26(4): 101073, 2024 04.
Article in English | MEDLINE | ID: mdl-38245859

ABSTRACT

PURPOSE: The 100,000 Genomes Project diagnosed a quarter of affected participants, but 26% of diagnoses were not on the applied gene panel(s); with many being de novo variants. Assessing biallelic variants without a gene panel is more challenging. METHODS: We sought to identify missed biallelic diagnoses using GenePy, which incorporates allele frequency, zygosity, and a user-defined deleterious metric, generating an aggregate GenePy score per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in 78,216 100,000 Genomes Project participants. For each gene, we ranked participant GenePy scores and scrutinized affected participants without a diagnosis, whose scores ranked among the top 5 for each gene. In cases which participant phenotypes overlapped with the disease gene of interest, we extracted rare variants and applied phase, ClinVar, and ACMG classification. RESULTS: 3184 affected individuals without a molecular diagnosis had a top-5-ranked GenePy score and 682 of 3184 (21%) had phenotypes overlapping with a top-ranking gene. In 122 of 669 (18%) phenotype-matched cases (excluding 13 withdrawn participants), we identified a putative missed diagnosis (2.2% of all undiagnosed participants). A further 334 of 669 (50%) cases have a possible missed diagnosis but require functional validation. CONCLUSION: Applying GenePy at scale has identified 456 potential diagnoses, demonstrating the value of novel diagnostic strategies.


Subject(s)
Missed Diagnosis , Humans , Virulence , Gene Frequency/genetics , Phenotype , Genes, Recessive
7.
Clin Genet ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890806

ABSTRACT

Ionotropic glutamate receptors (iGluRs), specifically α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), play a crucial role in orchestrating excitatory neurotransmission in the brain. AMPARs are intricate assemblies of subunits encoded by four paralogous genes: GRIA1-4. Functional studies have established that rare GRIA variants can alter AMPAR currents leading to a loss- or gain-of-function. Patients affected by rare heterozygous GRIA variants tend to have family specific variants and only few recurrent variants have been reported. We deep-phenotyped a cohort comprising eight unrelated children and adults, harboring a recurrent and well-established disease-causing GRIA1 variant (NM_001114183.1: c.1906G>A, p.(Ala636Thr)). Recurrent symptoms included motor and/or language delay, mild-severe intellectual disability, behavioral and psychiatric comorbidities, hypotonia and epilepsy. We also report challenges in social skills, autonomy, living and work situation, and occupational levels. Furthermore, we compared their clinical manifestations in relation to those documented in patients presenting with rare heterozygous variants at analogous positions within paralogous genes. This study provides unprecedented details on the neurodevelopmental outcomes, cognitive abilities, seizure profiles, and behavioral abnormalities associated with p.(Ala636Thr) refining and broadening the clinical phenotype.

8.
Mol Psychiatry ; 28(4): 1527-1544, 2023 04.
Article in English | MEDLINE | ID: mdl-36717740

ABSTRACT

The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.


Subject(s)
Axon Guidance , Neurodevelopmental Disorders , Animals , Neurodevelopmental Disorders/genetics , Neurons , Rho Guanine Nucleotide Exchange Factors , Zebrafish , Humans
9.
J Med Genet ; 60(2): 183-192, 2023 02.
Article in English | MEDLINE | ID: mdl-35393335

ABSTRACT

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Subject(s)
Epilepsy , Microcephaly , Receptors, N-Methyl-D-Aspartate , Humans , Heterozygote , Homozygote , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics
10.
Hum Genet ; 142(3): 351-362, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36477409

ABSTRACT

BACKGROUND: Genome sequencing was first offered clinically in the UK through the 100,000 Genomes Project (100KGP). Analysis was restricted to predefined gene panels associated with the patient's phenotype. However, panels rely on clearly characterised phenotypes and risk missing diagnoses outside of the panel(s) applied. We propose a complementary method to rapidly identify pathogenic variants, including those missed by 100KGP methods. METHODS: The Loss-of-function Observed/Expected Upper-bound Fraction (LOEUF) score quantifies gene constraint, with low scores correlated with haploinsufficiency. We applied DeNovoLOEUF, a filtering strategy to sequencing data from 13,949 rare disease trios in the 100KGP, by filtering for rare, de novo, loss-of-function variants in disease genes with a LOEUF score < 0.2. We compared our findings with the corresponding patient's diagnostic reports. RESULTS: 324/332 (98%) of the variants identified using DeNovoLOEUF were diagnostic or partially diagnostic (whereby the variant was responsible for some of the phenotype). We identified 39 diagnoses that were "missed" by 100KGP standard analyses, which are now being returned to patients. CONCLUSION: We have demonstrated a highly specific and rapid method with a 98% positive predictive value that has good concordance with standard analysis, low false-positive rate, and can identify additional diagnoses. Globally, as more patients are being offered genome sequencing, we anticipate that DeNovoLOEUF will rapidly identify new diagnoses and facilitate iterative analyses when new disease genes are discovered.


Subject(s)
Genome , Phenotype , Whole Genome Sequencing/methods
11.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109419

ABSTRACT

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Mutation , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases/genetics , rac1 GTP-Binding Protein/metabolism , Amino Acid Sequence , Cohort Studies , Female , Guanine Nucleotide Exchange Factors/chemistry , HEK293 Cells , Humans , Male , Phenotype , Protein Serine-Threonine Kinases/chemistry , Sequence Homology, Amino Acid
12.
Brief Bioinform ; 22(2): 1782-1789, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32186701

ABSTRACT

The causal genetic variants underlying more than 50% of single gene (monogenic) disorders are yet to be discovered. Many patients with conditions likely to have a monogenic basis do not receive a confirmed molecular diagnosis which has potential impacts on clinical management. We have developed a gene-specific score, essentiality-specific pathogenicity prioritization (ESPP), to guide the recognition of genes likely to underlie monogenic disease variation to assist in filtering of genome sequence data. When a patient genome is sequenced, there are frequently several plausibly pathogenic variants identified in different genes. Recognition of the single gene most likely to include pathogenic variation can guide the identification of a causal variant. The ESPP score integrates gene-level scores which are broadly related to gene essentiality. Previous work towards the recognition of monogenic disease genes proposed a model with increasing gene essentiality from 'non-essential' to 'essential' genes (for which pathogenic variation may be incompatible with survival) with genes liable to contain disease variation positioned between these two extremes. We demonstrate that the ESPP score is useful for recognizing genes with high potential for pathogenic disease-related variation. Genes classed as essential have particularly high scores, as do genes recently recognized as strong candidates for developmental disorders. Through the integration of individual gene-specific scores, which have different properties and assumptions, we demonstrate the utility of an essentiality-based gene score to improve sequence genome filtering.


Subject(s)
Genes, Essential , Virulence/genetics , Humans , Whole Genome Sequencing/methods
13.
Genet Med ; 25(1): 135-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36399134

ABSTRACT

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Subject(s)
Brachydactyly , Dwarfism , Intellectual Disability , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Dwarfism/genetics , Obesity/genetics , Phenotype , Protein-Arginine N-Methyltransferases/genetics
14.
Am J Med Genet A ; 191(7): 1722-1740, 2023 07.
Article in English | MEDLINE | ID: mdl-36987741

ABSTRACT

The TRIO gene encodes a rho guanine exchange factor, the function of which is to exchange GDP to GTP, and hence to activate Rho GTPases, and has been described to impact neurodevelopment. Specific genotype-to-phenotype correlations have been established previously describing striking differentiating features seen in variants located in specific domains of the TRIO gene that are associated with opposite effects on RAC1 activity. Currently, 32 cases with a TRIO gene alteration have been published in the medical literature. Here, we report an additional 25, previously unreported individuals who possess heterozygous TRIO variants and we review the literature. In addition, functional studies were performed on the c.4394A > G (N1465S) and c.6244-2A > G TRIO variants to provide evidence for their pathogenicity. Variants reported by the current study include missense variants, truncating nonsense variants, and an intragenic deletion. Clinical features were previously described and included developmental delay, learning difficulties, microcephaly, macrocephaly, seizures, behavioral issues (aggression, stereotypies), skeletal problems including short, tapering fingers and scoliosis, dental problems (overcrowding/delayed eruption), and variable facial features. Here, we report clinical features that have not been described previously, including specific structural brain malformations such as abnormalities of the corpus callosum and ventriculomegaly, additional psychological and dental issues along with a more recognizable facial gestalt linked to the specific domains of the TRIO gene and the effect of the variant upon the function of the encoded protein. This current study further strengthens the genotype-to-phenotype correlation that was previously established and extends the range of phenotypes to include structural brain abnormalities, additional skeletal, dental, and psychiatric issues.


Subject(s)
Microcephaly , Nervous System Malformations , Humans , Phenotype , Mutation , Mutation, Missense , Microcephaly/genetics
15.
Hum Mutat ; 43(7): 963-970, 2022 07.
Article in English | MEDLINE | ID: mdl-35476365

ABSTRACT

Use of blood RNA sequencing (RNA-seq) as a splicing analysis tool for clinical interpretation of variants of uncertain significance (VUSs) found via whole-genome and exome sequencing can be difficult for genes that have low expression in the blood due to insufficient read count coverage aligned to specific genes of interest. Here, we present a short amplicon reverse transcription-polymerase chain reaction(RT-PCR) for the detection of genes with low blood expression. Short amplicon RT-PCR, is designed to span three exons where an exon harboring a variant is flanked by one upstream and one downstream exon. We tested short amplicon RT-PCRs for genes that have median transcripts per million (TPM) values less than one according to the genotype-tissue expression database. Median TPM values of genes analyzed in this study are SYN1 = 0.8549, COL1A1 = 0.6275, TCF4 = 0.4009, DSP = .2894, TTN = 0.2851, COL5A2 = 0.1036, TERT = 0.04452, NTRK2 = 0.0344, ABCA4 = 0.00744, PRPH = 0, and WT1 = 0. All these genes show insufficient exon-spanning read coverage in our RNA-seq data to allow splicing analysis. We successfully detected all genes tested except PRPH and WT1. Aberrant splicing was detected in SYN1, TCF4, NTRK2, TTN, and TERT VUSs. Therefore, our results show short amplicon RT-PCR is a useful alternative for the analysis of splicing events in genes with low TPM in blood RNA for clinical diagnostics.


Subject(s)
Alternative Splicing , RNA , ATP-Binding Cassette Transporters/genetics , Humans , RNA/genetics , RNA Splicing/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription
16.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35979650

ABSTRACT

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Subject(s)
Genes, BRCA2 , RNA Splice Sites , Animals , Humans , Mice , Alternative Splicing , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32196547

ABSTRACT

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Subject(s)
Catenins/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Craniofacial Abnormalities/genetics , Ectropion/genetics , Heart Defects, Congenital/genetics , Tooth Abnormalities/genetics , Adolescent , Adult , Animals , Anodontia/diagnostic imaging , Anodontia/genetics , Anodontia/physiopathology , Child , Child, Preschool , Cleft Lip/diagnostic imaging , Cleft Lip/physiopathology , Cleft Palate/diagnostic imaging , Cleft Palate/physiopathology , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/physiopathology , Disease Models, Animal , Ectropion/diagnostic imaging , Ectropion/physiopathology , Female , Genetic Predisposition to Disease , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Humans , Male , Mice , Tooth Abnormalities/diagnostic imaging , Tooth Abnormalities/physiopathology , Xenopus , Young Adult , Delta Catenin
18.
Am J Hum Genet ; 104(4): 596-610, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879640

ABSTRACT

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Memory , Neurodevelopmental Disorders/genetics , Neurons/metabolism , Animals , Child , Child, Preschool , Developmental Disabilities/genetics , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Gene Expression Regulation , Humans , Intellectual Disability/genetics , Learning , Male , Mitosis , Muscle Hypotonia/genetics , Mushroom Bodies , Mutation , Syndrome , Transcription Factors/genetics
19.
Genome Res ; 29(7): 1057-1066, 2019 07.
Article in English | MEDLINE | ID: mdl-31160375

ABSTRACT

Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders.


Subject(s)
Aging/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , Growth Disorders/genetics , Mutation , Abnormalities, Multiple/genetics , Adolescent , Adult , Amish/genetics , Child , DNA Methylation , DNA Methyltransferase 3A , Face/abnormalities , Hematologic Diseases/genetics , Humans , Intellectual Disability/genetics , Leukemia, Myeloid, Acute/genetics , Male , Methyltransferases , Morphogenesis/genetics , Syndrome , Vestibular Diseases/genetics , Young Adult
20.
Cytogenet Genome Res ; 162(11-12): 587-598, 2022.
Article in English | MEDLINE | ID: mdl-36927524

ABSTRACT

Transcription of SHOX is dependent upon the interaction of the gene with a complex array of flanking regulatory elements. Duplications that contain flanking regulatory elements but not the SHOX gene have been reported in individuals with SHOX haploinsufficiency syndromes, suggesting that alterations to the physical organisation or genomic architecture may affect SHOX transcription. Individuals with tall stature and an additional X or Y chromosome have an extra copy of both the SHOX gene and the entire SHOX regulatory region, so all three copies of SHOX can be expressed fully. However, for a duplication of the SHOX gene that does not include all of the flanking regulatory elements, the potential effect on SHOX expression is difficult to predict. We present nine unpublished individuals with a SHOX whole gene duplication in whom the duplication contains variable amounts of the SHOX regulatory region, and we review 29 similar cases from the literature where phenotypic data were clearly stated. While tall stature was present in a proportion of these cases, we present evidence that SHOX whole gene duplications can also result in a phenotype more typically associated with SHOX haploinsufficiency and are significantly overrepresented in Leri-Weill dyschondrosteosis and idiopathic short stature probands compared to population controls. Although similar-looking duplications do not always produce a consistent phenotype, there may be potential genotype-phenotype correlations regarding the duplication size, regulatory element content, and the breakpoint proximity to the SHOX gene. Although ClinGen does not currently consider SHOX whole gene duplications to be clinically significant, the ClinGen triplosensitivity score does not take into account the context of the duplication, and more is now known about SHOX duplications and the role of flanking elements in SHOX regulation. The evidence presented here suggests that these duplications should not be discounted without considering the extent of the duplication and the patient phenotype, and should be included in diagnostic laboratory reports as variants of uncertain significance. Given the uncertain pathogenicity of these duplications, any reports should encourage the exclusion of all other causes of short stature where possible.

SELECTION OF CITATIONS
SEARCH DETAIL