Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Heliyon ; 10(10): e31392, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826759

ABSTRACT

Background: The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. Methods: To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. Results: We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. Significance: This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.

SELECTION OF CITATIONS
SEARCH DETAIL