Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Gene Ther ; 27(1-2): 104-107, 2020 02.
Article in English | MEDLINE | ID: mdl-31267008

ABSTRACT

The authors briefly describe their work in the construction of viral derived vectors for the use in gene therapy of muchopolysaccharide storage diseases (MPS), especially in Morquio A syndrome. The motivations to undertake that line of research about twenty years ago was the belief that gene therapy was the most plausible treatment for monogenic diseases due to the transient effect and its difficulty to reach bone tissue of the only effective treatment in use, the enzyme replacement therapy. The strategy used to increase the bone targeting was to include in the vectors an aspartic acid octapeptide that increases their affinity for the oppositely charged hydroxyapatite molecule of bone. It is also discussed the difficulties to do front line research in many developing countries, due to the extended belief that their research money should be mainly devoted to projects that render solutions in a very short time. However, the authors argue in favor of doing research in gene therapy, because it is proving to be the solution for many monogenic diseases, and therefore there is a need of people with good command of GT all over the world, in order to make good use of that therapy especially for ex-vivo treatments.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/genetics , Mucopolysaccharidoses/therapy , Colombia , Enzyme Replacement Therapy/methods , Genetic Vectors/therapeutic use , Humans , Mucopolysaccharidoses/genetics , Mucopolysaccharidosis IV/genetics , Mucopolysaccharidosis IV/therapy
2.
Am J Med Genet C Semin Med Genet ; 184(4): 885-895, 2020 12.
Article in English | MEDLINE | ID: mdl-33111489

ABSTRACT

GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the ß-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αß or ßß subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant ß-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant ß-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.


Subject(s)
Hexosaminidases , Sandhoff Disease , Fibroblasts , Humans , Lysosomes , Saccharomycetales , Sandhoff Disease/drug therapy , Sandhoff Disease/genetics
3.
Water Sci Technol ; 82(7): 1370-1379, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33079716

ABSTRACT

While extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.19 m2/g and 14.77 nm average pore diameter. Adsorption capacities against methylene blue, 2-naphthol and bisphenol-A at pH 7 were found to be 539 mg/g, 737 mg/g and 563 mg/g, respectively. Our material demonstrates a strong fit with the Langmuir isotherm, and adsorption kinetics show regression values near unity for the pseudo-second order kinetic model. A flow adsorption column was implemented for the remediation of tap water containing 20 mg/L methylene blue and found to quantitatively purify 11.5 L of contaminated water.


Subject(s)
Environmental Pollutants , Nanoparticles , Water Pollutants, Chemical , Glucose , Water
4.
BMC Genomics ; 19(1): 212, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29562890

ABSTRACT

BACKGROUND: Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations. RESULTS: To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290, and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes. CONCLUSIONS: UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Rearrangement , Genome, Human , INDEL Mutation , Osteosarcoma/diagnosis , Antigens, Neoplasm/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Cell Cycle Proteins , Cells, Cultured , Cytoskeletal Proteins , Genomics/methods , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Osteosarcoma/genetics , Sequence Deletion , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
5.
Pediatr Res ; 84(4): 545-551, 2018 10.
Article in English | MEDLINE | ID: mdl-30323349

ABSTRACT

BACKGROUND: Targeting specific tissues remains a major challenge to the promise of gene therapy. For example, several strategies have failed to target adeno-associated virus 2 (AAV2) vectors, to bone. We have evaluated in vitro and in vivo the affinity of an AAV2 vector to bone matrix, hydroxyapatite (HA) to treat Mucopolysacccharidosis IVA. METHODS: To increase vector affinity to HA, an aspartic acid octapeptide (D8) was inserted immediately after the N-terminal region of the VP2 capsid protein. The modified vector had physical titers and transduction efficiencies comparable to the unmodified vector. RESULTS: The bone-targeting vector had significantly higher HA affinity and vector genome copies in bone than the unmodified vector. The modified vector was also released from HA, and its enzyme activity in bone, 3 months post infusion, was 4.7-fold higher than the unmodified vector. CONCLUSION: Inserting a bone-targeting peptide into the vector capsid increases gene delivery and expression in the bone without decreasing enzyme expression. This approach could be a novel strategy to treat systemic bone diseases.


Subject(s)
Bone and Bones/metabolism , Capsid Proteins/chemistry , Durapatite/chemistry , Genetic Vectors , Mucopolysaccharidosis IV/therapy , Animals , Aspartic Acid/chemistry , Bone Marrow/metabolism , Brain/metabolism , Capsid , Dependovirus , Gene Expression Profiling , Gene Transfer Techniques , Genetic Therapy , HEK293 Cells , Humans , Hydroxyapatites/chemistry , Liver/metabolism , Mice , Mice, Transgenic , Parvovirinae , Protein Domains , Transgenes
6.
Nucleic Acids Res ; 43(Database issue): D117-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378322

ABSTRACT

The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k ('k-mers'). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org.


Subject(s)
DNA-Binding Proteins/metabolism , Databases, Protein , Protein Array Analysis , Transcription Factors/metabolism , Algorithms , DNA/chemistry , DNA/metabolism , Internet , Nucleotide Motifs , Software
8.
Nat Methods ; 10(8): 774-80, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23852450

ABSTRACT

Transcriptional enhancers are a primary mechanism by which tissue-specific gene expression is achieved. Despite the importance of these regulatory elements in development, responses to environmental stresses and disease, testing enhancer activity in animals remains tedious, with a minority of enhancers having been characterized. Here we describe 'enhancer-FACS-seq' (eFS) for highly parallel identification of active, tissue-specific enhancers in Drosophila melanogaster embryos. Analysis of enhancers identified by eFS as being active in mesodermal tissues revealed enriched DNA binding site motifs of known and putative, previously uncharacterized mesodermal transcription factors. Naive Bayes classifiers using transcription factor binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other cell types and organisms should accelerate the cataloging of enhancers and understanding how transcriptional regulation is encoded in them.


Subject(s)
Amino Acid Motifs , Drosophila melanogaster/genetics , Flow Cytometry/methods , Gene Expression Regulation, Developmental , Animals , Binding Sites , Drosophila melanogaster/embryology , Enhancer Elements, Genetic , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Mesoderm , Sequence Analysis, DNA
9.
Mol Genet Metab ; 116(1-2): 13-23, 2015.
Article in English | MEDLINE | ID: mdl-26071627

ABSTRACT

Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.


Subject(s)
Lysosomal Storage Diseases/drug therapy , Lysosomes/enzymology , Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Animals , Escherichia coli/metabolism , Genetic Vectors/metabolism , Humans , Plants/genetics , Proteins/therapeutic use , Recombinant Proteins/therapeutic use , Saccharomycetales/metabolism
10.
Mol Genet Metab ; 114(2): 94-109, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25537451

ABSTRACT

Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications. Patients often need multiple orthopedic procedures including cervical decompression and fusion, carpal tunnel release, hip reconstruction and replacement, and femoral or tibial osteotomy through their lifetime. Current measures to intervene in bone disease progression are not perfect and palliative, and improved therapies are urgently required. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy are available or in development for some types of MPS. Delivery of sufficient enzyme to bone, especially avascular cartilage, to prevent or ameliorate the devastating skeletal dysplasias remains an unmet challenge. The use of an anti-inflammatory drug is also under clinical study. Therapies should start at a very early stage prior to irreversible bone lesion, and damage since the severity of skeletal dysplasia is associated with level of activity during daily life. This review illustrates a current overview of therapies and their impact for bone lesions in MPS including ERT, HSCT, gene therapy, and anti-inflammatory drugs.


Subject(s)
Bone Diseases/therapy , Mucopolysaccharidoses/complications , Mucopolysaccharidoses/therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Bone and Bones/pathology , Chondrocytes/ultrastructure , Disease Progression , Enzyme Replacement Therapy , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans
11.
Pediatr Endocrinol Rev ; 12 Suppl 1: 141-51, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25345096

ABSTRACT

Morquio A syndrome is an autosomal recessive disorder, one of 50 lysosomal storage diseases (LSDs), and is caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Deficiency of this enzyme causes specific glycosaminoglycan (GAG) accumulation: keratan sulfate (KS) and chondroitin-6-sulfate (C6S). The majority of KS is produced in the cartilage, therefore, the undegraded substrates accumulate mainly in cartilage and in its extracelluar matrix (ECM), causing direct leads to direct impact on cartilage and bone development and leading to the resultant systemic skeletal spondyloepiphyseal dysplasia. Chondrogenesis ,the earliest phase of skeletal formation that leads to cartilage and bone formation is controlled by cellular interactions with the ECM, growth and differentiation factors and other molecules that affect signaling pathways and transcription factors in a temporal-spatial manner. In Morquio A patients, in early childhood or even at birth, the cartilage is disrupted presumably as a result of abnormal chondrogenesis and/ or endochondral ossification. The unique clinical features are characterized by a marked short stature, odontoid hypoplasia, protrusion of the chest, kyphoscoliosis, platyspondyly, coxa valga, abnormal gait, and laxity of joints. In spite of many descriptions of the unique clinical manifestations, diagnosis delay still occurs. The pathogenesis of systemic skeletal dysplasia in Morquio A syndrome remains an enigmatic challenge. In this review article, screening, diagnosis, pathogenesis and current and future therapies of Morquio A are discussed.


Subject(s)
Mucopolysaccharidosis IV/diagnosis , Mucopolysaccharidosis IV/therapy , Anti-Inflammatory Agents/therapeutic use , Enzyme Replacement Therapy , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans , Mucopolysaccharidosis IV/drug therapy , Mucopolysaccharidosis IV/surgery , Orthopedic Procedures
12.
Acta Paediatr ; 101(8): 805-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22519914

ABSTRACT

UNLABELLED: There are more than 6000 rare diseases (defined as affecting <5/10 000 individuals in Europe, <200 000 people in the United States). The rarity can create problems including: difficulties in obtaining timely, accurate diagnoses; lack of experienced healthcare providers; useful, reliable and timely information may be hard to find; research activities are less common; developing new medicines may not be economically feasible; treatments are sometimes very expensive; and in developing countries, the problems are compounded by other resource limitations. Emphasis is required to support appropriate research and development leading to better prevention, diagnosis and treatments of rare diseases. Notably, clinical trials using already existing drugs may result in new, affordable, treatment strategies. Moreover, rare diseases may teach us about common disorders. CONCLUSIONS: Countries are encouraged to implement specific research and development activities within their individual capabilities, so that patients worldwide have equal access to necessary interventions to maximize the potential of every individual.


Subject(s)
Biomedical Research , Global Health , Health Policy , Health Services Accessibility , Rare Diseases , Biomedical Research/ethics , Biomedical Research/legislation & jurisprudence , Clinical Trials as Topic/ethics , Clinical Trials as Topic/legislation & jurisprudence , Health Policy/legislation & jurisprudence , Health Services Accessibility/ethics , Health Services Accessibility/legislation & jurisprudence , Humans , Orphan Drug Production/ethics , Orphan Drug Production/legislation & jurisprudence , Patient Advocacy , Patient Rights , Rare Diseases/diagnosis , Rare Diseases/therapy
13.
Heliyon ; 7(7): e07671, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34381909

ABSTRACT

Metachromatic leukodystrophy (MLD) is a human neurodegenerative disorder characterized by progressive damage on the myelin band in the nervous system. MLD is caused by the impaired function of the lysosomal enzyme Arylsulphatase A (ARSA). The physiopathology mechanisms and the biochemical consequences in the brain of ARSA deficiency are not entirely understood. In recent years, the use of genome-scale metabolic (GEM) models has been explored as a tool for the study of the biochemical alterations in MLD. Previously, we modeled the metabolic consequences of different lysosomal storage diseases using single GEMs. In the case of MLD, using a glia GEM, we previously predicted that the metabolism of glycosphingolipids and neurotransmitters was altered. The results also suggested that mitochondrial metabolism and amino acid transport were the main reactions affected. In this study, we extended the modeling of the metabolic consequences of ARSA deficiency through the integration of neuron and glial cell metabolic models. Cell-specific models were generated from Recon2, and these were used to create a neuron-glial bi-cellular model. We propose a workflow for the integration of this type of model and its subsequent study. The results predicted the impairment pathways involved in the transport of amino acids, lipids metabolism, and catabolism of purines and pyrimidines. The use of this neuron-glial GEM metabolic reconstruction allowed to improve the prediction capacity of the metabolic consequences of ARSA deficiency, which might pave the way for the modeling of the biochemical alterations of other inborn errors of metabolism with central nervous system involvement.

14.
J Colloid Interface Sci ; 581(Pt B): 905-918, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32956910

ABSTRACT

Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min-1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of -30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm-2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.

15.
Mol Genet Metab ; 99(2): 124-31, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19932038

ABSTRACT

Glycosaminoglycans (GAGs) are accumulated in various organs in both mucopolysaccharidoses (MPS) and mucolipidoses II and III (ML II and III). MPS and ML II and III patients can not properly degrade dermatan sulfate (DS) and/or heparan sulfate (HS). HS storage occurs in the brain leading to neurological signs while DS storage involves mainly visceral and skeletal manifestations. Excessive DS and HS released into circulation and thus blood levels of both are elevated, therefore, DS and HS in blood could be critical biomarkers for MPS and ML. Such measurement can provide a potential early screening, assessment of the clinical course and efficacy of therapies. We here assay DS and HS levels in MPS and ML patients using liquid chromatography tandem mass spectrometry (LC/MS/MS). Plasma samples were digested by heparitinase and chondroitinase B to obtain disaccharides of DS and HS, followed by LC/MS/MS analysis. One hundred-twenty samples from patients and 112 control samples were analyzed. We found that all MPS I, II, III and VI patients had a significant elevation of all DS+HS compositions analyzed in plasma, compared with the controls (P<0.0001). Specificity and sensitivity was 100% if the cut off value is 800 ng/ml between control and these types of MPS group. All MPS I, II and III patients also had a significant elevation of plasma HS, compared with the controls (P<0.0001). All MPS VI patients had a significant elevation of plasma DS, compared with the controls (P<0.0001). These findings suggest measurement of DS and/or HS levels by LC/MS/MS is applicable to the screening for MPS I, II, III and VI patients.


Subject(s)
Dermatan Sulfate/blood , Disaccharides/blood , Heparitin Sulfate/blood , Mucolipidoses/blood , Mucopolysaccharidoses/blood , Tandem Mass Spectrometry/methods , Adolescent , Adult , Child , Child, Preschool , Dermatan Sulfate/urine , Glycosaminoglycans/urine , Heparitin Sulfate/urine , Humans , Infant , Middle Aged , Mucolipidoses/urine , Mucopolysaccharidoses/urine , Young Adult
16.
J Ind Microbiol Biotechnol ; 37(11): 1193-201, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20582614

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Currently no effective therapies exist for MPS IVA. In this work, production of a recombinant GALNS enzyme (rGALNS) in Escherichia coli BL21 strain was studied. At shake scale, the effect of glucose concentration on microorganism growth, and microorganism culture and induction times on rGALNS production were evaluated. At bench scale, the effect of aeration and agitation on microorganism growth, and culture and induction times were evaluated. The highest enzyme activity levels at shake scale were observed in 12 h culture after 2-4 h induction. At bench scale the highest enzyme activity levels were observed after 2 h induction. rGALNS amounts in inclusion bodies fraction were up to 17-fold higher than those observed in the soluble fraction. However, the highest levels of active enzyme were found in the soluble fraction. Western blot analysis showed the presence of a 50-kDa band, in both soluble and inclusion bodies fractions. These results show for the first time the feasibility and potential of production of active rGALNS in a prokaryotic system for development of enzyme replacement therapy for MPS IVA disease.


Subject(s)
Chondroitinsulfatases/biosynthesis , Escherichia coli/metabolism , Fermentation , Inclusion Bodies/microbiology , Blotting, Western , Chondroitinsulfatases/genetics , Cloning, Molecular , Culture Media , Enzyme Replacement Therapy/methods , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Mucopolysaccharidosis IV/therapy , Plasmids/genetics , Plasmids/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
17.
Adv Exp Med Biol ; 686: 493-511, 2010.
Article in English | MEDLINE | ID: mdl-20824462

ABSTRACT

In this chapter we discuss several of the most relevant subjects related to ethics on Rare Diseases. Some general aspects are discussed such as the socio-psychological problems that confront the patients and their families that finally lead to marginalization and exclusion of patients affected by these diseases from the health programs, even in wealthy countries. Then we address problems related to diagnosis and some ethical aspects of newborn screening, prenatal, pre-implantation diagnosis and reference centers, as well as some conditions that should be met by the persons and institutions performing such tasks. Alternatives of solutions for the most critical situations are proposed. Subsequently the orphan drugs subject is discussed not only from the availability point of view, prizes, industrial practices, and purchasing power in developed and developing societies. The research related to rare disease in children and other especially vulnerable conditions, the need for informed consent, review boards or ethics comities, confidentiality of the information, biobanks and pharmacogenetics are discussed.


Subject(s)
Bioethical Issues , Rare Diseases , Adolescent , Female , Humans , Infant, Newborn , Informed Consent/ethics , Male , Neonatal Screening/ethics , Orphan Drug Production/ethics , Pregnancy , Prenatal Diagnosis/ethics , Rare Diseases/diagnosis , Rare Diseases/prevention & control , Rare Diseases/psychology , Rare Diseases/therapy , Research , Tissue Banks/ethics
18.
Protein Sci ; 29(2): 606-616, 2020 02.
Article in English | MEDLINE | ID: mdl-31833142

ABSTRACT

Transcription activator-like effector (TALE) proteins have been used extensively for targeted binding of fusion proteins to loci of interest in (epi)genome engineering. Such approaches typically utilize four canonical TALE repeat variable diresidue (RVD) types, corresponding to the identities of two key amino acids, to target each nucleotide. Alternate RVDs with improved specificity are desired. Here, we focused on seven noncanonical RVDs that have been suggested to have improved specificity for their target nucleotides. We used custom protein binding microarrays to characterize the DNA-binding activity of 65 TALEs containing these alternate or corresponding canonical RVDs at multiple positions to ~5,000 unique DNA sequences per protein. We found that none of the noncanonical thymine-targeting RVDs displayed stronger preference for thymine than did the canonical RVD. Of the noncanonical RVDs with putatively improved specificity for guanine, only EN and NH showed greater discrimination of guanine over adenine. This improved specificity, however, comes at a cost: more substitutions of a noncanonical RVD for a canonical RVD generally decreased the protein's DNA-binding activity. Our results highlight the need to investigate RVD-nucleotide specificities in multiple protein contexts and suggest that a balance between canonical and noncanonical RVDs is needed to build TALEs with improved specificity.


Subject(s)
DNA/genetics , Transcription Activator-Like Effectors/genetics , DNA/chemistry , Genetic Variation/genetics , Protein Array Analysis , Repetitive Sequences, Amino Acid , Transcription Activator-Like Effectors/chemistry
19.
Nat Commun ; 11(1): 2052, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32345976

ABSTRACT

Cytosine base editors (CBEs) enable efficient, programmable reversion of T•A to C•G point mutations in the human genome. Recently, cytosine base editors with rAPOBEC1 were reported to induce unguided cytosine deamination in genomic DNA and cellular RNA. Here we report eight next-generation CBEs (BE4 with either RrA3F [wt, F130L], AmAPOBEC1, SsAPOBEC3B [wt, R54Q], or PpAPOBEC1 [wt, H122A, R33A]) that display comparable DNA on-target editing frequencies, whilst eliciting a 12- to 69-fold reduction in C-to-U edits in the transcriptome, and up to a 45-fold overall reduction in unguided off-target DNA deamination relative to BE4 containing rAPOBEC1. Further, no enrichment of genome-wide C•G to T•A edits are observed in mammalian cells following transfection of mRNA encoding five of these next-generation editors. Taken together, these next-generation CBEs represent a collection of base editing tools for applications in which minimized off-target and high on-target activity are required.


Subject(s)
Cytosine/metabolism , DNA/genetics , Gene Editing , RNA/genetics , APOBEC-1 Deaminase/metabolism , Cytosine Deaminase/metabolism , DNA Replication/genetics , Deamination , Genome , HEK293 Cells , Humans , Mutagenesis/genetics , Transcription, Genetic , Transcriptome/genetics
20.
J Clin Invest ; 130(3): 1288-1300, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31743109

ABSTRACT

Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of mucopolysaccharidoses, including Morquio A syndrome caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives, which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS for 10 days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete GALNS enzyme to orally induce tolerance to GALNS prior to ERT resulted in several improvements to ERT in mice: (a) decreased splenocyte proliferation after in vitro GALNS stimulation, (b) modulation of the cytokine secretion profile, (c) decrease in GALNS-specific IgG or IgE in plasma, (d) decreased GAG storage in liver, and (e) fewer circulating immune complexes in plasma. This model could be extrapolated to other lysosomal storage disorders in which immune response hinders ERT.


Subject(s)
Chondroitinsulfatases/therapeutic use , Desensitization, Immunologic , Enzyme Replacement Therapy , Immune Tolerance/drug effects , Mucopolysaccharidosis IV , Peptides/pharmacology , Administration, Oral , Animals , CHO Cells , Chondroitinsulfatases/immunology , Cricetulus , Cytokines/immunology , Humans , Immune Tolerance/genetics , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Mice , Mice, Knockout , Mucopolysaccharidosis IV/immunology , Mucopolysaccharidosis IV/therapy , Peptides/immunology
SELECTION OF CITATIONS
SEARCH DETAIL