Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Chemistry ; 29(32): e202300178, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37016739

ABSTRACT

Cis-trans isomerization of amide bonds impedes de novo design of folded peptoids (poly-N-substituted glycines) with precise secondary structures and affects peptoid-biomolecule binding affinity. Herein, from X-ray, NMR and DFT studies of azapeptoids, we have discovered a tetrel bonding interaction that stabilizes trans-peptoids. We show that peptoids having α-heteroatoms and N-aryl groups in the sidechain adopt trans-amide geometries due to the presence of a nX /πAr →σ*Cα-N tetrel bonding interaction between the sidechain α-heteroatom lone pair (nX ) or π-electrons (πAr ) and the σ* orbital of the backbone Cα -N bond. Further, CD spectroscopic studies of oligo-proline host-guest model peptides showed that azapeptoid residues stabilize polyproline II helical conformation. These data indicate that the sidechain-backbone tetrel bonding could be leveraged to design peptoids with precise secondary structures for a wide range of biological and material applications.


Subject(s)
Peptoids , Peptoids/chemistry , Amides/chemistry , Protein Structure, Secondary , Magnetic Resonance Spectroscopy , Glycine
2.
J Org Chem ; 85(5): 2927-2937, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32000488

ABSTRACT

We report the solid-phase synthesis of N,N'-di(acylamino)-2,5-diketopiperazine, an acylhydrazide-based conformationally rigid 2,5-DKP scaffold having exocyclic N-N bonds. We also show that different combinations of acylhydrazides, carbazates, semicarbazides, amino acids, and primary amines can be used to synthesize a highly diverse collection of hybrid DKP molecules via the solid-phase submonomer synthesis route. Finally, we show incorporation of a methyl substituent in one of the carbon atoms of the DKP ring to generate chiral daa- and hybrid-DKPs without compromising the synthetic efficiency.

3.
Org Lett ; 23(13): 4949-4954, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34060858

ABSTRACT

An unusual Namide···H-Namide hydrogen bond (HB) was previously proposed to stabilize the azapeptide ß-turns. Herein we provide experimental evidence for the Namide···H-Namide HB and show that this HB endows a stabilization of 1-3 kcal·mol-1 and enforces the trans-cis-trans (t-c-t) and cis-cis-trans (c-c-t) amide bond conformations in azapeptides and N-methyl-azapeptides, respectively. Our results indicate that these Namide···H-Namide HBs can have stabilizing contributions even in short azapeptides that cannot fold to form ß-turns.

4.
Chem Commun (Camb) ; 56(36): 4874-4877, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32255138

ABSTRACT

In recent years, some X-ray structural and computational evidence has emerged for noncovalent carbon bonding (C-bond). However, evidence of C-bonds in solution is limited. Herein, from the conformational analyses of strategically designed N-methyl-N,N'-diacylhydrazines, we for the first time show that C-bonds can be modulated to control the conformational preferences of small molecules in solution. We show that unusual N(amide)C-X noncovalent carbon bonding interactions stabilize the trans-cis (t-c) amide bond rotamers of N-methyl-N,N'-diacylhydrazines over the expected trans-trans (t-t) rotamers.

SELECTION OF CITATIONS
SEARCH DETAIL