Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33436528

ABSTRACT

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Subject(s)
Brain/diagnostic imaging , Brain/growth & development , Exercise/physiology , Healthy Lifestyle/physiology , Multimodal Imaging/methods , Accelerometry/methods , Accelerometry/trends , Adolescent , Child , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Male , Multimodal Imaging/trends
2.
Neuroimage ; 249: 118830, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34965454

ABSTRACT

Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.


Subject(s)
Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/standards , Diffusion Magnetic Resonance Imaging/trends , Humans , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Image Processing, Computer-Assisted/trends
3.
Neuroimage ; 227: 117693, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33385545

ABSTRACT

Many brain imaging studies aim to measure structural connectivity with diffusion tractography. However, biases in tractography data, particularly near the boundary between white matter and cortical grey matter can limit the accuracy of such studies. When seeding from the white matter, streamlines tend to travel parallel to the convoluted cortical surface, largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding from the cortical grey matter, streamlines generally run near the cortical surface until reaching deep white matter. These so-called "gyral biases" limit the accuracy and effective resolution of cortical structural connectivity profiles estimated by tractography algorithms, and they do not reflect the expected distributions of axonal densities seen in invasive tracer studies or stains of myelinated fibres. We propose an algorithm that concurrently models fibre density and orientation using a divergence-free vector field within gyral blades to encourage an anatomically-justified streamline density distribution along the cortical white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated fibre orientations. Using in vivo data from the Human Connectome Project, we show that this algorithm reduces tractography biases. We compare the structural connectomes to functional connectomes from resting-state fMRI, showing that our model improves cross-modal agreement. Finally, we find that after parcellation the changes in the structural connectome are very minor with slightly improved interhemispheric connections (i.e, more homotopic connectivity) and slightly worse intrahemispheric connections when compared to tracers.


Subject(s)
Algorithms , Brain/anatomy & histology , Connectome/methods , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , Diffusion Tensor Imaging , Humans
4.
Neuroimage ; 224: 117002, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32502668

ABSTRACT

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained variance and spurious correlations. UK Biobank is a powerful resource for studying associations between imaging and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large subject numbers. However, the resulting high statistical power also raises the sensitivity to confound effects, which therefore have to be carefully considered. In this work we describe a set of possible confounds (including non-linear effects and interactions that researchers may wish to consider for their studies using such data). We include descriptions of how we can estimate the confounds, and study the extent to which each of these confounds affects the data, and the spurious correlations that may arise if they are not controlled. Finally, we discuss several issues that future studies should consider when dealing with confounds.


Subject(s)
Biological Specimen Banks , Brain , Neuroimaging , Electronic Data Processing , Head , Humans , Neuroimaging/methods , Time Factors , United Kingdom
5.
Neuroimage ; 215: 116832, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32283273

ABSTRACT

Measuring fibre dispersion in white matter with diffusion magnetic resonance imaging (MRI) is limited by an inherent degeneracy between fibre dispersion and microscopic diffusion anisotropy (i.e., the diffusion anisotropy expected for a single fibre orientation). This means that estimates of fibre dispersion rely on strong assumptions, such as constant microscopic anisotropy throughout the white matter or specific biophysical models. Here we present a simple approach for resolving this degeneracy using measurements that combine linear (conventional) and spherical tensor diffusion encoding. To test the accuracy of the fibre dispersion when our microstructural model is only an approximation of the true tissue structure, we simulate multi-compartment data and fit this with a single-compartment model. For such overly simplistic tissue assumptions, we show that the bias in fibre dispersion is greatly reduced (~5x) for single-shell linear and spherical tensor encoding data compared with single-shell or multi-shell conventional data. In in-vivo data we find a consistent estimate of fibre dispersion as we reduce the b-value from 3 to 1.5 ms/µm2, increase the repetition time, increase the echo time, or increase the diffusion time. We conclude that the addition of spherical tensor encoded data to conventional linear tensor encoding data greatly reduces the sensitivity of the estimated fibre dispersion to the model assumptions of the tissue microstructure.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Models, Neurological , Nerve Fibers, Myelinated , White Matter/diagnostic imaging , Brain/physiology , Humans , Nerve Fibers, Myelinated/physiology , White Matter/physiology
6.
Neuroimage ; 207: 116391, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31765804

ABSTRACT

Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.


Subject(s)
Auditory Perception/physiology , Emotions/physiology , Infant, Premature/growth & development , Music , Neural Pathways/growth & development , Diffusion Tensor Imaging/methods , Female , Humans , Infant , Infant, Newborn , Infant, Premature, Diseases , Infant, Very Low Birth Weight/growth & development , Magnetic Resonance Imaging/methods , Male , White Matter/growth & development
7.
Neuroimage ; 215: 116800, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32276072

ABSTRACT

Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Connectome/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Animals , Brain/diagnostic imaging , Macaca fascicularis , Macaca fuscata , Macaca mulatta , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
8.
Neuroimage ; 223: 117303, 2020 12.
Article in English | MEDLINE | ID: mdl-32866666

ABSTRACT

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20-45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Connectome/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Artifacts , Humans , Infant , Signal-To-Noise Ratio
9.
NMR Biomed ; 33(9): e4348, 2020 09.
Article in English | MEDLINE | ID: mdl-32632961

ABSTRACT

Diffusion MRI has the potential to provide important information about the connectivity and microstructure of the human brain during normal and abnormal development, noninvasively and in vivo. Recent developments in MRI hardware and reconstruction methods now permit the acquisition of large amounts of data within relatively short scan times. This makes it possible to acquire more informative multi-shell data, with diffusion sensitisation applied along many directions over multiple b-value shells. Such schemes are characterised by the number of shells acquired, and the specific b-value and number of directions sampled for each shell. However, there is currently no clear consensus as to how to optimise these parameters. In this work, we propose a means of optimising multi-shell acquisition schemes by estimating the information content of the diffusion MRI signal, and optimising the acquisition parameters for sensitivity to the observed effects, in a manner agnostic to any particular diffusion analysis method that might subsequently be applied to the data. This method was used to design the acquisition scheme for the neonatal diffusion MRI sequence used in the developing Human Connectome Project (dHCP), which aims to acquire high quality data and make it freely available to the research community. The final protocol selected by the algorithm, and currently in use within the dHCP, consists of 20 b=0 images and diffusion-weighted images at b = 400, 1000 and 2600 s/mm2 with 64, 88 and 128 directions per shell, respectively.


Subject(s)
Diffusion Magnetic Resonance Imaging , Algorithms , Anisotropy , Contrast Media/chemistry , Humans , Infant, Newborn , Signal Processing, Computer-Assisted
10.
Neuroimage ; 201: 116014, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31315062

ABSTRACT

The combination of diffusion MRI (dMRI) with microscopy provides unique opportunities to study microstructural features of tissue, particularly when acquired in the same sample. Microscopy is frequently used to validate dMRI microstructure models, addressing the indirect nature of dMRI signals. Typically, these modalities are analysed separately, and microscopy is taken as a gold standard against which dMRI-derived parameters are validated. Here we propose an alternative approach in which we combine dMRI and microscopy data obtained from the same tissue sample to drive a single, joint model. This simultaneous analysis allows us to take advantage of the breadth of information provided by complementary data acquired from different modalities. By applying this framework to a spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate a global fibre response function to determine the fibre orientation distribution in each voxel. However, the assumption of a 'brain-wide' fibre response function may be challenged if the diffusion characteristics of white matter vary across the brain. Using a generative joint dMRI-histology model, we demonstrate that the fibre response function is dependent on local anatomy, and that current spherical-deconvolution based models may be overestimating dispersion and underestimating the number of distinct fibre populations per voxel.


Subject(s)
Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Microscopy , Humans
11.
Neuroimage ; 184: 801-812, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30267859

ABSTRACT

Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Artifacts , Diffusion Tensor Imaging , Female , Humans , Male , Quality Control , Reproducibility of Results , Signal-To-Noise Ratio
12.
Neuroimage ; 185: 750-763, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29852283

ABSTRACT

The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age.


Subject(s)
Brain/diagnostic imaging , Connectome/methods , Image Processing, Computer-Assisted/methods , Infant, Newborn , Brain/growth & development , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male
14.
Neuroimage ; 176: 417-430, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29684644

ABSTRACT

When axonal fibres approach or leave the cortex, their trajectories tend to closely follow the cortical convolutions. To quantify this tendency, we propose a three-dimensional coordinate system based on the gyral geometry. For every voxel in the brain, we define a "radial" axis orthogonal to nearby surfaces, a "sulcal" axis along the sulcal depth gradient that preferentially points from deep white matter to the gyral crown, and a "gyral" axis aligned with the long axis of the gyrus. When compared with high-resolution, in-vivo diffusion MRI data from the Human Connectome Project, we find that in superficial white matter the apparent diffusion coefficient (at b = 1000) along the sulcal axis is on average 16% larger than along the gyral axis and twice as large as along the radial axis. This is reflected in the vast majority of observed fibre orientations lying close to the tangential plane (median angular offset < 7°), with the dominant fibre orientation typically aligning with the sulcal axis. In cortical grey matter, fibre orientations transition to a predominantly radial orientation. We quantify the width and location of this transition and find strong reproducibility in test-retest data, but also a clear dependence on the resolution of the diffusion data. The ratio of radial to tangential diffusion is fairly constant throughout most of the cortex, except for a decrease of the diffusivitiy ratio in the sulcal fundi and the primary somatosensory cortex (Brodmann area 3) and an increase in the primary motor cortex (Brodmann area 4). Although only constrained by cortical folds, the proposed gyral coordinate system provides a simple and intuitive representation of white and grey matter fibre orientations near the cortex, and may be useful for future studies of white matter development and organisation.


Subject(s)
Axons , Cerebral Cortex/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , Adult , Cerebral Cortex/diagnostic imaging , Connectome , Humans , Motor Cortex/anatomy & histology , Motor Cortex/diagnostic imaging , Principal Component Analysis , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/diagnostic imaging , White Matter/diagnostic imaging
15.
Neuroimage ; 173: 88-112, 2018 06.
Article in English | MEDLINE | ID: mdl-29409960

ABSTRACT

The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.


Subject(s)
Brain/anatomy & histology , Connectome/methods , Image Processing, Computer-Assisted/methods , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging/methods , Male
16.
Neuroimage ; 183: 972-984, 2018 12.
Article in English | MEDLINE | ID: mdl-30261308

ABSTRACT

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy children, adolescents, and young adults (ages 5-21), and HCP-A is enrolling 1200+ healthy adults (ages 36-100+), with each study collecting longitudinal data in a subset of individuals at particular age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22-35), but some imaging-related changes were motivated or necessitated by hardware changes, the need to reduce the total amount of scanning per participant, and/or the additional challenges of working with young and elderly populations. Here, we provide an overview of the common HCP-D/A imaging protocol including data and rationales for protocol decisions and changes relative to HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently acquired data for use by the scientific community to investigate and define normative developmental and aging related changes in the healthy human brain.


Subject(s)
Aging , Brain , Connectome/methods , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
17.
Magn Reson Med ; 79(3): 1276-1292, 2018 03.
Article in English | MEDLINE | ID: mdl-28557055

ABSTRACT

PURPOSE: Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time-efficient and flexible diffusion acquisition capability with built-in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. METHODS: Complete flexibility in the sampling of diffusion space combined with free choice of phase-encode-direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split-diffusion-gradient preparation, multiband acceleration, and a restart capacity were added. RESULTS: The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high-angular resolution, maximally time-efficient (20 min) multishell protocol with 300 diffusion-weighted volumes was acquired in >400 neonates. An optimal design of a high-resolution (1.2 × 1.2 mm2 ) two-shell acquisition with 54 diffusion weighted volumes was obtained using a split-gradient design. CONCLUSION: The presented framework provides flexibility to generate time-efficient and motion-robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub-optimal choices. Magn Reson Med 79:1276-1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Neuroimaging/methods , Anisotropy , Connectome , Humans , Image Processing, Computer-Assisted , Infant, Newborn
18.
Neuroimage ; 152: 450-466, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28284799

ABSTRACT

Most motion correction methods work by aligning a set of volumes together, or to a volume that represents a reference location. These are based on an implicit assumption that the subject remains motionless during the several seconds it takes to acquire all slices in a volume, and that any movement occurs in the brief moment between acquiring the last slice of one volume and the first slice of the next. This is clearly an approximation that can be more or less good depending on how long it takes to acquire one volume and in how rapidly the subject moves. In this paper we present a method that increases the temporal resolution of the motion correction by modelling movement as a piecewise continous function over time. This intra-volume movement correction is implemented within a previously presented framework that simultaneously estimates distortions, movement and movement-induced signal dropout. We validate the method on highly realistic simulated data containing all of these effects. It is demonstrated that we can estimate the true movement with high accuracy, and that scalar parameters derived from the data, such as fractional anisotropy, are estimated with greater fidelity when data has been corrected for intra-volume movement. Importantly, we also show that the difference in fidelity between data affected by different amounts of movement is much reduced when taking intra-volume movement into account. Additional validation was performed on data from a healthy volunteer scanned when lying still and when performing deliberate movements. We show an increased correspondence between the "still" and the "movement" data when the latter is corrected for intra-volume movement. Finally we demonstrate a big reduction in the telltale signs of intra-volume movement in data acquired on elderly subjects.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Artifacts , Computer Simulation , Humans , Movement , Reproducibility of Results
19.
Neuroimage ; 158: 205-218, 2017 09.
Article in English | MEDLINE | ID: mdl-28669902

ABSTRACT

Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing, fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asymmetric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography paradigm cannot directly take advantage of the new information. We assess performance using ultra-high resolution histology data where we can compare true orientation distributions against sub-voxel fibre patterns estimated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and asymmetric) fibre complexity.


Subject(s)
Brain Mapping/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Nerve Fibers , Algorithms , Animals , Brain/anatomy & histology , Humans , Macaca , Models, Neurological , Pattern Recognition, Automated/methods
20.
PLoS Comput Biol ; 10(3): e1003529, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676052

ABSTRACT

The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research.


Subject(s)
Brain/physiology , Connectome , Adult , Animals , Anisotropy , Brain Mapping , Cluster Analysis , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Macaca , Male , Nerve Net , Neural Pathways , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL