Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 120(16): e2218280120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036992

ABSTRACT

Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.


Subject(s)
Butterflies , Humans , Animals , Ecosystem , Animal Migration , Europe , Insecta , Seasons
2.
Rapid Commun Mass Spectrom ; 38(3): e9675, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38211347

ABSTRACT

RATIONALE: Many insect species undertake multigenerational migrations in the Afro-tropical and Palearctic ranges, and understanding their migratory connectivity remains challenging due to their small size, short life span and large population sizes. Hydrogen isotopes (δ2 H) can be used to reconstruct the movement of dispersing or migrating insects, but applying δ2 H for provenance requires a robust isotope baseline map (i.e. isoscape) for the Afro-Palearctic. METHODS: We analyzed the δ2 H in the wings (δ2 Hwing ) of 142 resident butterflies from 56 sites across the Afro-Palearctic. The δ2 Hwing values were compared to the predicted local growing-season precipitation δ2 H values (δ2 HGSP ) using a linear regression model to develop an insect wing δ2 H isoscape. We used multivariate linear mixed models and high-resolution and time-specific remote sensing climate and environmental data to explore the controls of the residual δ2 Hwing variability. RESULTS: A strong linear relationship was found between δ2 Hwing and δ2 HGSP values (r2 = 0.53). The resulting isoscape showed strong patterns across the Palearctic but limited variation and high uncertainty for the Afro-tropics. Positive residuals of this relationship were correlated with dry conditions for the month preceding sampling whereas negative residuals were correlated with more wet days for the month preceding sampling. High intra-site δ2 Hwing variance was associated with lower relative humidity for the month preceding sampling and higher elevation. CONCLUSION: The δ2 Hwing isoscape is applicable for tracing herbivorous lepidopteran insects that migrate across the Afro-Palearctic range but has limited geolocation potential in the Afro-tropics. The spatial analysis of uncertainty using high-resolution climatic data demonstrated that many African regions with highly variable evaporation rates and relative humidity have δ2 Hwing values that are less related to δ2 HGSP values. Increasing geolocation precision will require new modeling approaches using more time-specific environmental data and/or independent geolocation tools.


Subject(s)
Butterflies , Animals , Hydrogen , Isotopes/analysis , Seasons , Linear Models
4.
Rapid Commun Mass Spectrom ; 33(5): 461-472, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30597678

ABSTRACT

RATIONALE: Strontium isotope ratios (87 Sr/86 Sr) of hair may be a valuable tool to estimate human provenance. However, the systematics and mechanisms controlling spatial variation in 87 Sr/86 Sr of modern human hair remain unclear. Here, we measure 87 Sr/86 Sr of hair specimens from across the USA to assess the presence of geospatial relationships. METHODS: Ninety-eight human hair specimens were collected from salon/barbershop floors in 48 municipalities throughout the conterminous USA. [Sr] and 87 Sr/86 Sr ratios were measured from hair using quadrupole and multi-collector inductively coupled plasma mass spectrometers, respectively. The [Sr] and 87 Sr/86 Sr ratios of hair were compared with the measured [Sr] and 87 Sr/86 Sr ratios of tap waters from the collection locations. In addition, the 87 Sr/86 Sr ratio of hair was compared with the modeled ratios of bedrock and surface waters. RESULTS: Hair color was independent of the 87 Sr/86 Sr ratio, but related to [Sr]. The 87 Sr/86 Sr ratios of hair and leachate were not statistically different and were positively correlated; however, in several hair-leachate pairs, the ratios were conspicuously different. The 87 Sr/86 Sr ratios of both hair and leachate were linearly correlated with tap water. The 87 Sr/86 Sr ratio of hair was also significantly correlated with the modeled ratio of bedrock and surface waters, although the 87 Sr/86 Sr ratio of hair was most strongly correlated with the measured ratio of tap water. CONCLUSIONS: The 87 Sr/86 Sr ratio of hair is related to the ratio of tap water, which varied geographically. The ratio of hair provided geographic information about an individual's recent residence. Differences in the 87 Sr/86 Sr ratios of hair and hair leachate may be concomitant with travel and could potentially be used as a screening tool to identify recent movements.


Subject(s)
Drinking Water/analysis , Hair/chemistry , Strontium Isotopes/analysis , Fresh Water/chemistry , Humans , Mass Spectrometry , United States
5.
Nat Commun ; 15(1): 5205, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918383

ABSTRACT

The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.


Subject(s)
Butterflies , Flight, Animal , Animals , Butterflies/physiology , Flight, Animal/physiology , Wind , Ecosystem , South America , Europe , Animal Migration/physiology , Pollen , Africa , Animal Distribution
6.
Sci Adv ; 10(3): eadk0818, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232155

ABSTRACT

Woolly mammoths in mainland Alaska overlapped with the region's first people for at least a millennium. However, it is unclear how mammoths used the space shared with people. Here, we use detailed isotopic analyses of a female mammoth tusk found in a 14,000-year-old archaeological site to show that she moved ~1000 kilometers from northwestern Canada to inhabit an area with the highest density of early archaeological sites in interior Alaska until her death. DNA from the tusk and other local contemporaneous archaeological mammoth remains revealed that multiple mammoth herds congregated in this region. Early Alaskans seem to have structured their settlements partly based on mammoth prevalence and made use of mammoths for raw materials and likely food.


Subject(s)
Mammoths , Humans , Animals , Female , Infant, Newborn , Mammoths/genetics , DNA , Canada , Alaska , Fossils
7.
Curr Biol ; 34(12): 2684-2692.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38848713

ABSTRACT

Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.


Subject(s)
Animal Migration , Butterflies , DNA Barcoding, Taxonomic , Pollen , Animals , Butterflies/physiology , Europe/epidemiology , Middle East/epidemiology , Africa/epidemiology , Seasons
8.
Sci Total Environ ; 896: 165165, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37394077

ABSTRACT

Constraining the multiple climatic, lithological, topographic, and geochemical variables controlling isotope variations in large rivers is often challenging with standard statistical methods. Machine learning (ML) is an efficient method for analyzing multidimensional datasets, resolving correlated processes, and exploring relationships between variables simultaneously. We tested four ML algorithms to elucidate the controls of riverine δ7Li variations across the Yukon River Basin (YRB). We compiled (n = 102) and analyzed new samples (n = 21), producing a dataset of 123 river water samples collected across the basin during the summer including δ7Li and extracted environmental, climatological, and geological characteristics of the drainage area for each sample from open-access geospatial databases. The ML models were trained, tuned, and tested under multiple scenarios to avoid issues such as overfitting. Random Forests (RF) performed best at predicting δ7Li across the basin, with the median model explaining 62 % of the variance. The most important variables controlling δ7Li across the basin are elevation, lithology, and past glacial coverage, which ultimately influence weathering congruence. Riverine δ7Li has a negative dependence on elevation. This reflects congruent weathering in kinetically-limited mountain zones with short residence times. The consistent ranking of lithology, specifically igneous and metamorphic rock cover, as a top feature controlling riverine δ7Li modeled by the RFs is unexpected. Further study is required to validate this finding. Rivers draining areas that were extensively covered during the last glacial maximum tend to have lower δ7Li due to immature weathering profiles resulting in short residence times, less secondary mineral formation and therefore more congruent weathering. We demonstrate that ML provides a fast, simple, visualizable, and interpretable approach for disentangling key controls of isotope variations in river water. We assert that ML should become a routine tool, and present a framework for applying ML to analyze spatial metal isotope data at the catchment scale.

9.
PLoS One ; 18(2): e0281089, 2023.
Article in English | MEDLINE | ID: mdl-36791072

ABSTRACT

During the Late Holocene, hunter-gatherer interaction networks significantly grew in intensity and extension across Patagonia. Although this growth is evidenced by the increased flow of exotic items across the region, the mechanisms behind these strengthening social networks remain unclear. Since evidence suggests that some individuals might have performed long-distance trips, this article aims to address the potential relationship between these individuals and the flows of exotic items in North Patagonia. We analyzed 54 enamel teeth for strontium isotopes and reconstructed their probable mobility using mixed-effect models and isotope-based geographic assignments. We inferred population and individual mobility trends and compared them against the flow of exotic items built from a standardized compilation. Our results indicate that most individuals have isotopic composition compatible with residence within their burial and surrounding areas. However, a few individuals show isotopic composition incompatible with their burial areas, which suggests axes -from the burial location to the most likely isotope integration area- of extraordinary mobility. At the same time, the flows of exotic items overlap with these axes around the eastern sector of the study area suggesting that this location could have been a central point of convergence for people and items. We argue that small-scale socially driven mobility could have played a relevant role as a general mechanism of interaction that fostered and materialized Patagonian interaction networks during the Late Holocene.


Subject(s)
Strontium Isotopes , Tooth , Humans , Argentina , Strontium Isotopes/analysis , Tooth/chemistry , Burial
10.
PLoS One ; 17(10): e0275902, 2022.
Article in English | MEDLINE | ID: mdl-36288264

ABSTRACT

Unidentified human remains have historically been investigated nationally by law enforcement authorities. However, this approach is outdated in a globalized world with rapid transportation means, where humans easily move long distances across borders. Cross-border cooperation in solving cold-cases is rare due to political, administrative or technical challenges. It is fundamental to develop new tools to provide rapid and cost-effective leads for international cooperation. In this work, we demonstrate that isotopic measurements are effective screening tools to help identify cold-cases with potential international ramifications. We first complete existing databases of hydrogen and sulfur isotopes in human hair from residents across North America by compiling or analyzing hair from Canada, the United States (US) and Mexico. Using these databases, we develop maps predicting isotope variations in human hair across North America. We demonstrate that both δ2H and δ34S values of human hair are highly predictable and display strong spatial patterns. Multi-isotope analysis combined with dual δ2H and δ34S geographic probability maps provide evidence for international travel in two case studies. In the first, we demonstrate that multi-isotope analysis in bulk hair of deceased border crossers found in the US, close to the Mexico-US border, help trace their last place of residence or travel back to specific regions of Mexico. These findings were validated by the subsequent identification of these individuals through the Pima County Office of the Medical Examiner in Tucson, Arizona. In the second case study, we demonstrate that sequential multi-isotope analysis along the hair strands of an unidentified individual found in Canada provides detailed insights into the international mobility of this individual during the last year of life. In both cases, isotope data provide strong leads towards international travel.


Subject(s)
Isotopes , Potassium Iodide , Humans , United States , Isotopes/analysis , Sulfur Isotopes/analysis , Hair/chemistry , Hydrogen/analysis
11.
PLoS One ; 16(5): e0250383, 2021.
Article in English | MEDLINE | ID: mdl-33951062

ABSTRACT

Sulfur isotope composition of organic tissues is a commonly used tool for gathering information about provenance and diet in archaeology and paleoecology. However, the lack of maps predicting sulfur isotope variations on the landscape limits the possibility to use this isotopic system in quantitative geographic assignments. We compiled a database of 2,680 sulfur isotope analyses in the collagen of archaeological human and animal teeth from 221 individual locations across Western Europe. We used this isotopic compilation and remote sensing data to apply a multivariate machine-learning regression, and to predict sulfur isotope variations across Western Europe. The resulting model shows that sulfur isotope patterns are highly predictable, with 65% of sulfur isotope variations explained using only 4 variables representing marine sulfate deposition and local geological conditions. We used this novel sulfur isoscape and existing strontium and oxygen isoscapes of Western Europe to apply triple isotopes continuous-surface probabilistic geographic assignments to assess the origin of a series of teeth from local animals and humans from Brittany. We accurately and precisely constrained the origin of these individuals to limited regions of Brittany. This approach is broadly transferable to studies in archaeology and paleoecology as illustrated in a companion paper (Colleter et al. 2021).


Subject(s)
Archaeology , Oxygen Isotopes/analysis , Strontium Isotopes/analysis , Sulfur Isotopes/analysis , Europe , Geography
12.
PLoS One ; 16(5): e0248086, 2021.
Article in English | MEDLINE | ID: mdl-33951047

ABSTRACT

Mass graves are usually key historical markers with strong incentive for archeological investigations. The identification of individuals buried in mass graves has long benefitted from traditional historical, archaeological, anthropological and paleopathological techniques. The addition of novel methods including genetic, genomic and isotopic geochemistry have renewed interest in solving unidentified mass graves. In this study, we demonstrate that the combined use of these techniques allows the identification of the individuals found in two Breton historical mass graves, where one method alone would not have revealed the importance of this discovery. The skeletons likely belong to soldiers from the two enemy armies who fought during a major event of Breton history: the siege of Rennes in 1491, which ended by the wedding of the Duchess of Brittany with the King of France and signaled the end of the independence of the region. Our study highlights the value of interdisciplinary approaches with a particular emphasis on increasingly accurate isotopic markers. The development of the sulfur isoscape and testing of the triple isotope geographic assignment are detailed in a companion paper [13].


Subject(s)
Anthropology , Burial , Radiometric Dating , Paleopathology
13.
PLoS One ; 15(8): e0237105, 2020.
Article in English | MEDLINE | ID: mdl-32776947

ABSTRACT

Studying the isotope variability in fast-growing human tissues (e.g., hair, nails) is a powerful tool to investigate human nutrition. However, interpreting the controls of this isotopic variability at the population scale is often challenging as multiple factors can superimpose on the isotopic signals of a current population. Here, we analyse carbon, nitrogen, and sulphur isotopes in hair from 590 Canadian resident volunteers along with demographics, dietary and geographic information about each participant. We use a series of machine-learning regressions to demonstrate that the isotopic values in Canadian residents' hair are not only influenced by dietary choices but by geographic controls. First, we show that isotopic values in Canadian residents' hair have a limited range of variability consistent with the homogenization of Canadian dietary habits (as in other industrialized countries). As expected, some of the isotopic variability within the population correlates with recorded individual dietary choices. More interestingly, some regional spatial patterns emerge from carbon and sulphur isotope variations. The high carbon isotope composition of the hair of eastern Canadians relative to that of western Canadians correlates with the dominance of corn in the eastern Canadian food-industry. The gradient of sulphur isotope composition in Canadian hair from coast to inland regions correlates with the increasing soil pH and decreasing deposition of marine-derived sulphate aerosols in local food systems. We conclude that part of the isotopic variability found in the hair of Canadian residents reflects the isotopic signature associated with specific environmental conditions and agricultural practices of regional food systems transmitted to humans through the high consumption rate of intra-provincial food in Canada. Our study also underscores the strong potential of sulphur isotopes as tracers of human and food provenance.


Subject(s)
Biological Variation, Population , Carbon Isotopes/analysis , Hair/chemistry , Nitrogen Isotopes/analysis , Sulfur Isotopes/analysis , Adult , Canada , Diet/statistics & numerical data , Female , Humans , Male
14.
PLoS One ; 13(5): e0197386, 2018.
Article in English | MEDLINE | ID: mdl-29847595

ABSTRACT

Strontium isotope ratios (87Sr/86Sr) are gaining considerable interest as a geolocation tool and are now widely applied in archaeology, ecology, and forensic research. However, their application for provenance requires the development of baseline models predicting surficial 87Sr/86Sr variations ("isoscapes"). A variety of empirically-based and process-based models have been proposed to build terrestrial 87Sr/86Sr isoscapes but, in their current forms, those models are not mature enough to be integrated with continuous-probability surface models used in geographic assignment. In this study, we aim to overcome those limitations and to predict 87Sr/86Sr variations across Western Europe by combining process-based models and a series of remote-sensing geospatial products into a regression framework. We find that random forest regression significantly outperforms other commonly used regression and interpolation methods, and efficiently predicts the multi-scale patterning of 87Sr/86Sr variations by accounting for geological, geomorphological and atmospheric controls. Random forest regression also provides an easily interpretable and flexible framework to integrate different types of environmental auxiliary variables required to model the multi-scale patterning of 87Sr/86Sr variability. The method is transferable to different scales and resolutions and can be applied to the large collection of geospatial data available at local and global levels. The isoscape generated in this study provides the most accurate 87Sr/86Sr predictions in bioavailable strontium for Western Europe (R2 = 0.58 and RMSE = 0.0023) to date, as well as a conservative estimate of spatial uncertainty by applying quantile regression forest. We anticipate that the method presented in this study combined with the growing numbers of bioavailable 87Sr/86Sr data and satellite geospatial products will extend the applicability of the 87Sr/86Sr geo-profiling tool in provenance applications.


Subject(s)
Environmental Monitoring/methods , Machine Learning , Strontium Isotopes/analysis , Algorithms , Atmosphere , Climate , Europe , Geography , Geology , Linear Models , Regression Analysis
15.
Biol Rev Camb Philos Soc ; 92(1): 43-59, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26392144

ABSTRACT

Strontium (Sr) isotope analysis can provide detailed biogeographical and ecological information about modern and ancient organisms. Because Sr isotope ratios (87 Sr/86 Sr) in biologically relevant materials such as water, soil, vegetation, and animal tissues predominantly reflect local geology, they can be used to distinguish geologically distinct regions as well as identify highly mobile individuals or populations. While the application of Sr isotope analysis to biological research has been steadily increasing, high analytical costs have prohibited more widespread use. Additionally, accessibility of this geochemical tool has been hampered due to limited understanding of (i) the degree to which biologically relevant materials differ in their spatial averaging of 87 Sr/86 Sr ratios, and (ii) how these differences may be affected by lithologic complexity. A recently developed continental-scale model that accounts for variability in bedrock weathering rates and predicts Sr isotope ratios of surface water could help resolve these questions. In addition, if this 'local water' model can accurately predict 87 Sr/86 Sr ratios for other biologically relevant materials, there would be reduced need for researchers to assess regional Sr isotope patterns empirically. Here, we compile 87 Sr/86 Sr data for surface water, soil, vegetation, and mammalian and fish skeletal tissues from the literature and compare the accuracy with which the local water model predicts Sr isotope data among these five materials across the contiguous USA. We find that measured Sr isotope ratios for all five materials are generally close to those predicted by the local water model, although not with uniform accuracy. Mammal skeletal tissues are most accurately predicted, particularly in regions with low variability in 87 Sr/86 Sr predicted by the local water model. Increasing regional geologic heterogeneity increases both the offset and variance between modelled and empirical Sr isotope ratios, but its effects are broadly similar across materials. The local water model thus provides a readily available source of background data for predicting 87 Sr/86 Sr for biologically relevant materials in places where empirical data are lacking. The availability of increasingly high-quality modelled Sr data will dramatically expand the accessibility of this geochemical tool to ecological applications.


Subject(s)
Ecology/methods , Ecology/trends , Paleontology/methods , Paleontology/trends , Strontium Isotopes/analysis , Animals , Mammals , Research/trends , Soil , Strontium Isotopes/metabolism
16.
Sci Adv ; 3(3): e1602183, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28345044

ABSTRACT

The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

SELECTION OF CITATIONS
SEARCH DETAIL