Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Planta ; 198(4): 495-501, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28321658

ABSTRACT

Phosphoenolpyruvate (PEP) carboxylation was measured as dark 14CO2 fixation in leaves and roots (in vivo) or as PEP carboxylase (PEPCase) activity in desalted leaf and roof extracts (in vitro) from Pisum sativum L. cv. Kleine Rheinländerin. Its relation to the malate content and to the nitrogen source (nitrate or ammonium) was investigated. In tissue from nitrate-grown plants, PEP carboxylation varied diurnally, showing an increase upon illumination and a decrease upon darkening. Diurnal variations in roots were much lower than in leaves. Fixation rates in leaves remained constantly low in continuous darkness or high in continuous light. Dark CO2 fixation of leaf slices also decreased when leaves were preilluminated for 1 h in CO2-free air, suggesting that the modulation of dark CO2 fixation was related to assimilate availability in leaves and roots. Phosphoenolpyruvate carboxylase activity was also measured in vitro. However, no difference in maximum enzyme activity was found in extracts from illuminated or darkened leaves, and the response to substrate and effectors (PEP, malate, glucose-6-phosphate, pH) was also identical. The serine/threonine protein kinase inhibitors K252b, H7 and staurosporine, and the protein phosphatase 2A inhibitors okadaic acid and cantharidin, fed through the leaf petiole, did not have the effects on dark CO2 fixation predicted by a regulatory system in which PEPCase is modulated via reversible protein phosphorylation. Therefore, it is suggested that the diurnal modulation of PEP carboxylation in vivo in leaves and roots of pea is not caused by protein phosphorylation, but rather by direct allosteric effects. Upon transfer of plants to ammonium-N or to an N-free nutrient solution, mean daily malate levels in leaves decreased drastically within 4-5 d. At that time, the diurnal oscillations of PEP carboxylation in vivo disappeared and rates remained at the high light-level. The coincidence of the two events suggests that PEPCase was de-regulated because malate levels became very low. The drastic decrease of leaf malate contents upon transfer of plants from nitrate to ammonium nutrition was apparently not caused by increased amino acid or protein synthesis, but probably by higher decarboxylation rates.

2.
New Phytol ; 151(3): 585-595, 2001 Sep.
Article in English | MEDLINE | ID: mdl-33853257

ABSTRACT

• The sink-source transition of developing Nicotiana tabacum (tobacco) leaves was studied here using chlorophyll fluorescence imaging. • In accordance with leaf development, the quantum efficiency of PSII, showed a steep gradient across the leaf with increasing values towards the tip. • The linear electron transport rate (ETR) saturated at higher CO2 concentrations in the younger, than in the mature, part of the leaf, probably due to a lower Rubisco activity or a higher CO2 diffusion resistance. • The induction of ETR at CO2 concentrations near the compensation point after long-term dark adaptation of the young leaf, showed distinct responses; ETR rose rapidly in the basal but more slowly in the apical regions. There was a correlation between fast induction and carbohydrate import, as measured by 14 C-translocation. In the basal regions, larger pools of metabolic intermediates are expected due to imported carbohydrates. These might be used in the Calvin cycle directly after dark-light transition providing the electron acceptors for the faster induction of ETR. Additionally, a higher mitochondrial respiration can provide CO2 for the Calvin cycle in these regions.

3.
Oecologia ; 91(1): 47-51, 1992 Aug.
Article in English | MEDLINE | ID: mdl-28313372

ABSTRACT

In well-watered plants of Clusia uvitana, a species capable of carbon fixation by crassulacean acid metabolism (CAM), recently expanded leaves gained 5 to 13-fold more carbon during 12 h light than during 12 h dark periods. When water was withheld from the plants, daytime net CO2 uptake strongly decreased over a period of several days, whereas there was a marked increase in nocturnal carbon gain. Photosynthetic rates in the chloroplasts were hardly affected by the water stress treatment, as demonstrated by measurements of chlorophyll a fluorescence of intact leaves, indicating efficient decarboxylation of organic acids and refixation of carbon in the light. Within a few days after rewatering, plants reverted to the original gas exchange pattern with net CO2 uptake predominantly occurring during daytime. The reversible increase in dark CO2 fixation was paralleled by a reversible increase in the content of phosphoenolpyruvate (PEP) carboxylase protein. In wellwatered plants, short-term changes in the degree of dark CO2 fixation were induced by alterations in CO2 partial pressure during light periods: a decrease from 350 to 170 µbar CO2 caused nocturnal carbon gain, measured in normal air (350 µbar), to increase, whereas an increase to 700 µbar CO2, during the day, caused net dark CO2 fixation to cease. The increased CAM activity in response to water shortage may, at least to some extent, be directly related to the reduced carbon gain during daytime.

SELECTION OF CITATIONS
SEARCH DETAIL