Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Phys ; 154(13): 134105, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33832234

ABSTRACT

Computer simulations generate microscopic trajectories of complex systems at a single thermodynamic state point. We recently introduced a Maximum Caliber (MaxCal) approach for dynamical reweighting. Our approach mapped these trajectories to a Markovian description on the configurational coordinates and reweighted path probabilities as a function of external forces. Trajectory probabilities can be dynamically reweighted both from and to equilibrium or non-equilibrium steady states. As the system's dimensionality increases, an exhaustive description of the microtrajectories becomes prohibitive-even with a Markovian assumption. Instead, we reduce the dimensionality of the configurational space to collective variables (CVs). Going from configurational to CV space, we define local entropy productions derived from configurationally averaged mean forces. The entropy production is shown to be a suitable constraint on MaxCal for non-equilibrium steady states expressed as a function of CVs. We test the reweighting procedure on two systems: a particle subject to a two-dimensional potential and a coarse-grained peptide. Our CV-based MaxCal approach expands dynamical reweighting to larger systems, for both static and dynamical properties, and across a large range of driving forces.

2.
Phys Rev E ; 100(6-1): 060103, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962494

ABSTRACT

Computer simulations generate trajectories at a single, well-defined thermodynamic state point. Statistical reweighting offers the means to reweight static and dynamical properties to different equilibrium state points by means of analytic relations. We extend these ideas to nonequilibrium steady states by relying on a maximum path entropy formalism subject to physical constraints. Stochastic thermodynamics analytically relates the forward and backward probabilities of any pathway through the external nonconservative force, enabling reweighting both in and out of equilibrium. We avoid the combinatorial explosion of microtrajectories by systematically constructing pathways through Markovian transitions. We further identify a quantity that is invariant to dynamical reweighting, analogous to the density of states in equilibrium reweighting.

SELECTION OF CITATIONS
SEARCH DETAIL