Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nature ; 556(7699): 85-88, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29579743

ABSTRACT

Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

2.
Opt Express ; 30(20): 36087-36095, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258545

ABSTRACT

Optical frequency combs based on semiconductor lasers are a promising technology for monolithic integration of dual-comb spectrometers. However, the stabilization of offset frequency fceo remains a challenging feat due the lack of octave-spanning spectra. In a dual-comb configuration, the uncorrelated jitter of the offset frequencies leads to a non-periodic signal resulting in broadened beatnotes with a limited signal-to-noise ratio (SNR). Hence, expensive data acquisition schemes and complex signal processing are currently required. Here, we show that the offset frequencies of two frequency combs can be synchronized by optical injection locking, which allows full phase-stabilization when combined with electrical injection locking of both repetition frequencies frep. A single comb line isolated via an optical Vernier filter serves as Master oscillator for injection locking. The resulting dual-comb signal is periodic and stable over thousands of periods. This enables coherent averaging using analog electronics, which increases the SNR and reduces the data size by one and three orders of magnitude, respectively. The presented method will enable fully phase-stabilized dual-comb spectrometers by leveraging on integrated optical filters and provides access for comparing and stabilizing fceo to narrow-linewidth optical references.

3.
Opt Express ; 28(6): 8200-8210, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32225449

ABSTRACT

The generation of frequency combs in the mid-infrared (MIR) spectral range by quantum cascade lasers (QCLs) has the potential for revolutionizing dual-comb multi-heterodyne spectroscopy in the molecular fingerprint region. However, in contrast to frequency combs based on passively mode-locked ultrafast lasers, their operation relies on a completely different mechanism resulting from a four-wave mixing process occurring in the semiconductor gain medium that locks the modes together. As a result, these lasers do not emit pulses and no direct self-referencing of a QCL comb spectrum has been achieved so far. Here, we present a detailed frequency noise characterization of a MIR QCL frequency comb operating at a wavelength of 8 µm with a mode spacing of ∼7.4 GHz. Using a beat measurement with a narrow-linewidth single-mode QCL in combination with a dedicated electrical scheme, we measured the frequency noise properties of an optical mode of the QCL comb, and indirectly of its offset frequency for the first time, without detecting it by the standard approach of nonlinear interferometry applied to ultrafast mode-locked lasers. In addition, we also separately measured the noise of the comb mode spacing extracted electrically from the QCL. We observed a strong anti-correlation between the frequency fluctuations of the offset frequency and mode spacing, leading to optical modes with a linewidth slightly below 1 MHz in the free-running QCL comb (at 1-s integration time), which is narrower than the individual contributions of the offset frequency and mode spacing that are at least 2 MHz each.

4.
Opt Express ; 28(5): 6197-6208, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225874

ABSTRACT

We present gapless, high-resolution absorption and dispersion spectra obtained with quantum cascade laser frequency combs covering 55 cm-1. Using phase-sensitive dual comb design, the comb lines are gradually swept over 10 GHz, corresponding to the free spectral range of the laser devices, by applying a current modulation. We show that with interleaving the spectral point spacing is reduced by more than four orders of magnitude over the full spectral span of the frequency comb. The potential of this technique for high-precision gas sensing is illustrated by measuring the low pressure (107 hPa) absorption and dispersion spectra of methane spanning the range of 1170 cm-1 - 1225 cm-1 with a resolution of 0.001 cm-1.

5.
Opt Lett ; 45(23): 6462-6465, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33258837

ABSTRACT

We present quantum cascade laser (QCL) frequency comb devices with engineered waveguides for managing the dispersion. The QCL waveguide consists of multiple sections with different waveguide widths. The narrow and wide sections of the waveguide are designed in a way to compensate the group velocity dispersion (GVD) of each other and thereby produce a flat and slightly negative GVD for the QCL. The QCL exhibits continuous comb operation over a large part of the dynamic range of the laser. Strong and narrow-linewidth intermode beatnotes are achieved in a more than 300 mA wide operation current range. The comb device also features considerably high output power (>380mW) and wide optical bandwidth (>55cm-1).

6.
Opt Express ; 27(16): 22708-22716, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510557

ABSTRACT

Room temperature surface emission is realized on a large area (1.5 mm × 1.5 mm) photonic crystal quantum cascade laser (PhC-QCL) driven under pulsed mode, at the wavelength around 8.75 µm. By introducing in-plane asymmetry to the pillar shape and optimizing the current injection with a grid-like window contact, the maximum peak power of the PhC-QCL is up to 5 W. The surface emitting beam has a crossing shape with 10° divergence.

7.
Opt Express ; 26(18): 23167-23177, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184971

ABSTRACT

Quantum cascade lasers are proving to be instrumental in the development of compact frequency comb sources at mid-infrared and terahertz frequencies. Here we demonstrate a heterogeneous terahertz quantum cascade laser with two active regions spaced exactly by one octave. Both active regions are based on a four-quantum well laser design and they emit a combined 3 mW peak power at 15 K in pulsed mode. The two central frequencies are 2.3 THz (bandwidth 300 GHz) and 4.6 THz (bandwidth 270 GHz). The structure is engineered in a way that allows simultaneous operation of the two active regions in the comb regime, serving as a double comb source as well as a test bench structure for all waveguide internal self-referencing techniques. Narrow RF beatnotes (∼ 15 kHz) are recorded showing the simultaneous operation of the two combs, whose free-running coherence properties are investigated by means of beatnote spectroscopy performed both with an external detector and via self-mixing. Comb operation in a highly dispersive region (4.6 THz) relying only on gain bandwidth engineering shows the potential for broad spectral coverage with compact comb sources.

8.
Opt Lett ; 43(8): 1746-1749, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652355

ABSTRACT

Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.

9.
Opt Lett ; 43(18): 4522-4525, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211906

ABSTRACT

In this Letter, we report on sub-millisecond response time mid-infrared dual-comb spectroscopy using a balanced asymmetric (dispersive) dual-comb setup with a matched pair of plasmon-enhanced-waveguide dispersion-compensated quantum cascade lasers. The system performance is demonstrated by measuring spectra of Bromomethane (CH3Br) and Freon 134a (CH2FCF3) at approximately 7.8 µm. A purely computational phase and timing-correction procedure is used to validate the coherence of the quantum cascade lasers frequency combs and to enable coherent averaging over the time scales investigated. The system achieves a noise-equivalent absorption better than 1×10-3 Hz-1/2, with a resolution of 9.8 GHz (0.326 cm-1) and an optical bandwidth of 1 THz (32 cm-1), with an average optical power of more than 1 mW per spectral element.

10.
Nano Lett ; 17(12): 7410-7415, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29172537

ABSTRACT

Ultrastrong light-matter coupling allows the exploration of new states of matter through the interaction of strong vacuum fields with huge electronic dipoles. By using hybrid dipole antenna-split ring resonator-based cavities with extremely small effective mode volumes Veff/λ03 ≃ 6 × 10-10 and surfaces Seff/λ02 ≃ 3.5 × 10-7, we probe the ultrastrong light-matter coupling at 300 GHz to less than 100 electrons located in the last occupied Landau level of a high mobility two-dimensional electron gas, measuring a normalized coupling ratio of ΩR/ωc = 0.36. Effects of the extremely reduced cavity dimensions are observed as the light-matter coupled system is better described by an effective mass heavier than the uncoupled one. These results open the way to ultrastrong coupling at the single-electron level in two-dimensional electron systems.

11.
Opt Express ; 24(4): 3294-312, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26906992

ABSTRACT

We present the electrical and optical characterization and theoretical modeling of the transient behavior of regular 4.5-µm single-mode emitting distributed feedback (DFB) quantum cascade lasers (QCLs). Low residual capacitance together with a high-frequency optimized three-terminal coplanar waveguide configuration leads to modulation frequencies up to 23.5 GHz (optical) and 26.5 GHz (electrical), respectively. A maximum 3-dB cut-off value of 6.6 GHz in a microwave rectification scheme is obtained, with a significant increase in electrical modulation bandwidth when increasing the DC-current for the entire current range of the devices. Optical measurements by means of FTIR-spectroscopy and a heterodyne beating experiment reveal the presence of a resonance peak, due to coupling of the lasing DFB- with its neighboring below-threshold Fabry-Pérot-(FP-)mode, when modulating around the cavity roundtrip frequency. This resonance is modeled by a 2-mode Maxwell-Bloch formalism. It enhances only one sideband and consequently leads to the first experimental observation of the single-sideband regime in such kind of devices.

12.
Opt Express ; 24(1): 662-71, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26832296

ABSTRACT

We present 3.36 µm buried heterostructure distributed-feedback quantum cascade lasers with a power dissipation at threshold below 250 mW and operation temperatures as high as 130 °C. Threshold values below 20 mA at -10 °C in pulsed operation and 30 mA at -20 °C in continuous-wave operation are reported. Optical power above 130 mW and 13 mW are achieved at -20 °C in pulsed and continuous-wave operation, respectively. Continuous-wave operation occurs until 15 °C. We show single-mode emission in pulsed and continuous-wave operation. Single-mode performance is demonstrated in long pulse (5.56 µs) operation. The laser far-field exhibits a single lobe emission with full-width-half-max of 27 ° × 34 °.

13.
Opt Express ; 23(3): 3117-25, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836170

ABSTRACT

We demonstrate a broadband terahertz amplifier based on ultrafast gain switching in a quantum cascade laser. A heterogeneous active region is processed into a coupled cavity metal-metal waveguide device and provides broadband terahertz gain that allows achieving an amplification bandwidth of more than 500 GHz. The temporal and spectral evolution of a terahertz seed pulse, which is generated in an integrated emitter section, is presented and an amplification factor of 21 dB is reached. Furthermore, the quantum cascade amplifier emission spectrum of the emerging sub-nanosecond terahertz pulse train is measured by time-domain spectroscopy and reveals discrete modes between 2.14 and 2.68 THz.

14.
Opt Express ; 23(26): 33270-94, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26831993

ABSTRACT

We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.

15.
Opt Express ; 22(2): 2126-31, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24515222

ABSTRACT

Intersubband polaritons in the THz range are observed by coupling intersubband transitions in parabolic quantum wells to metallic microcavities. The polaritonic states are tuned in frequency by electrically modulating the electron density in the device using a gate. Tuning of 140 Ghz is observed at a lower polariton frequency of 2.5 THz in reflection measurements. Biasing the structure for electroluminescence measurements also modulates the electron density, which can lead to differential electroluminescence line shapes.

16.
Opt Express ; 22(2): 2111-8, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24515220

ABSTRACT

In this work, we present GaInAs/AlAs/AlInAs quantum cascade lasers emitting from 3.2 to 3.4 µm. Single-mode emission is obtained using buried distributed-feedback gratings fabricated using standard deep-UV contact lithography. This technique can easily be transferred to industrial production. Devices with single-mode emission down to 3.19 µm were achieved with peak power of up to 250 mW at -20 °C. A tuning range of 11 cm(-1) was obtained by changing the device temperature between -30 °C and 20 °C.

17.
Nano Lett ; 13(7): 3193-8, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23802181

ABSTRACT

We propose an hybrid graphene/metamaterial device based on terahertz electronic split-ring resonators directly evaporated on top of a large-area single-layer CVD graphene. Room temperature time-domain spectroscopy measurements in the frequency range from 250 GHz to 2.75 THz show that the presence of the graphene strongly changes the THz metamaterial transmittance on the whole frequency range. The graphene gating allows active control of such interaction, showing a modulation depth of 11.5% with an applied bias of 10.6 V. Analytical modeling of the device provides a very good qualitative and quantitative agreement with the measured device behavior. The presented system shows potential as a THz modulator and can be relevant for strong light-matter coupling experiments.

18.
Opt Express ; 21(16): 19180-6, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938833

ABSTRACT

We present the design and realization of short-wavelength (λ = 4.53 µm) and buried-heterostructure quantum cascade lasers in a master oscillator power amplifier configuration. Watt-level, singlemode peak optical output power is demonstrated for typical non-tapered 4 µm wide and 5.25 mm long devices. Farfield measurements prove a symmetric, single transverse-mode emission in TM(00)-mode with typical divergences of 25° and 27° in and perpendicular to growth direction, respectively. We demonstrate singlemode tuning over a range of 7.9 cm(-1) for temperatures between 263K and 313K and also singlemode emission for different driving currents. The side mode suppression ratio is measured to be higher than 20 dB.

19.
Science ; 382(6669): 434-438, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37883562

ABSTRACT

Synthetic lattices in photonics enable the exploration of light states in new dimensions, transcending phenomena common only to physical space. We propose and demonstrate a quantum walk comb in synthetic frequency space formed by externally modulating a ring-shaped semiconductor laser with ultrafast recovery times. The initially ballistic quantum walk does not dissipate into low supermode states of the synthetic lattice; instead, the state stabilizes in a broad frequency comb, unlocking the full potential of the synthetic frequency lattice. Our device produces a low-noise, nearly flat broadband comb (reaching 100 per centimeter bandwidth) and offers a promising platform to generate broadband, tunable, and stable frequency combs.

20.
Sci Adv ; 9(24): eadf9426, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37315137

ABSTRACT

Quantum cascade lasers (QCLs) constitute an intriguing opportunity for the generation of on-chip optical dissipative Kerr solitons (DKSs). Originally demonstrated in passive microresonators, DKSs were recently observed in mid-infrared ring QCL paving the way for their achievement even at longer wavelengths. To this end, we realized defect-free terahertz ring QCLs featuring anomalous dispersion leveraging on a technological platform based on waveguide planarization. A concentric coupled waveguide approach is implemented for dispersion compensation, while a passive broadband bullseye antenna improves the device power extraction and far field. Comb spectra featuring sech2 envelopes are presented for free-running operation. The presence of solitons is further supported by observing the highly hysteretic behavior, measuring the phase difference between the modes, and reconstructing the intensity time profile highlighting the presence of self-starting 12-picosecond-long pulses. These observations are in very good agreement with our numeric simulations based on a Complex Ginzburg-Landau Equation (CGLE).

SELECTION OF CITATIONS
SEARCH DETAIL