Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell Environ ; 47(3): 854-870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37975319

ABSTRACT

Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.


Subject(s)
Dehydration , Salinity , Droughts , Plant Leaves , Xylem , Trees
2.
Plant Cell Environ ; 46(7): 2031-2045, 2023 07.
Article in English | MEDLINE | ID: mdl-37151121

ABSTRACT

The incidence and severity of global mangrove mortality due to drought is increasing. Yet, little is understood of the capacity of mangroves to show long-term acclimation of leaf water relations to severe drought. We tested for differences between mid-dry season leaf water relations in two cooccurring mangroves, Aegiceras corniculatum and Rhizophora stylosa before a severe drought (a heatwave combined with low rainfall) and after its relief by the wet season. Consistent with ecological stress memory, the legacy of severe drought enhanced salinity tolerance in the subsequent dry season through coordinated adjustments that reduced the leaf water potential at the turgor loss point and increased cell wall rigidity. These adjustments enabled maintenance of turgor and relative water content with increasing salinity. As most canopy growth occurs during the wet season, acclimation to the 'memory' of higher salinity in the previous dry season enables greater leaf function with minimal adjustments, as long-lived leaves progress from wet through dry seasons. However, declining turgor safety margins - the difference between soil water potential and leaf water potential at turgor loss - implied increasing limitation to water use with increasing salinity. Thus, plasticity in leaf water relations contributes fundamentally to mangrove function under varying salinity regimes.


Subject(s)
Droughts , Salt Tolerance , Seasons , Plant Leaves , Water
3.
Plant Cell Environ ; 44(9): 2925-2937, 2021 09.
Article in English | MEDLINE | ID: mdl-34118083

ABSTRACT

Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.


Subject(s)
Lythraceae/metabolism , Plant Leaves/metabolism , Water/metabolism , Dehydration , Kinetics , Lythraceae/anatomy & histology , Plant Leaves/anatomy & histology , Plant Transpiration , Seasons , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL