Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
EMBO Rep ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943005

ABSTRACT

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.

2.
Biochem J ; 475(12): 2091-2105, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29802118

ABSTRACT

DIS3 (defective in sister chromatid joining) is the catalytic subunit of the exosome, a protein complex involved in the 3'-5' degradation of RNAs. DIS3 is a highly conserved exoribonuclease, also known as Rrp44. Global sequencing studies have identified DIS3 as being mutated in a range of cancers, with a considerable incidence in multiple myeloma. In this work, we have identified two protein-coding isoforms of DIS3. Both isoforms are functionally relevant and result from alternative splicing. They differ from each other in the size of their N-terminal PIN (PilT N-terminal) domain, which has been shown to have endoribonuclease activity and tether DIS3 to the exosome. Isoform 1 encodes a full-length PIN domain, whereas the PIN domain of isoform 2 is shorter and is missing a segment with conserved amino acids. We have carried out biochemical activity assays on both isoforms of full-length DIS3 and the isolated PIN domains. We find that isoform 2, despite missing part of the PIN domain, has greater endonuclease activity compared with isoform 1. Examination of the available structural information allows us to provide a hypothesis to explain this altered behaviour. Our results also show that multiple myeloma patient cells and all cancer cell lines tested have higher levels of isoform 1 compared with isoform 2, whereas acute myeloid leukaemia and chronic myelomonocytic leukaemia patient cells and samples from healthy donors have similar levels of isoforms 1 and 2. Taken together, our data indicate that significant changes in the ratios of the two isoforms could be symptomatic of haematological cancers.


Subject(s)
Alternative Splicing , Exosome Multienzyme Ribonuclease Complex/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/enzymology , Neoplasm Proteins/biosynthesis , Exosome Multienzyme Ribonuclease Complex/genetics , HEK293 Cells , HeLa Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Neoplasm Proteins/genetics , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL