Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 58(32): 14486-14495, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39066709

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctanesulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.


Subject(s)
Fishes , Water Pollutants, Chemical , Animals , Fishes/metabolism , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , North Carolina , Chromatography, Liquid , Environmental Monitoring , Alkanesulfonic Acids/analysis
2.
Environ Sci Technol ; 57(26): 9567-9579, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37340551

ABSTRACT

Central North Carolina (NC) is highly contaminated with per- and polyfluoroalkyl substances (PFAS), in part due to local fluorochemical production. Little is known about the exposure profiles and long-term health impacts for humans and animals that live in nearby communities. In this study, serum PFAS concentrations were determined using liquid chromatography high-resolution mass spectrometry and diagnostic clinical chemistry endpoints were assessed for 31 dogs and 32 horses that reside in Gray's Creek NC at households with documented PFAS contamination in their drinking water. PFAS were detected in every sample, with 12 of the 20 PFAS detected in ≥50% of samples from each species. The average total PFAS concentrations in horses were lower compared to dogs who had higher concentrations of PFOS (dogs 2.9 ng/mL; horses 1.8 ng/mL), PFHxS (dogs 1.43 ng/mL, horses < LOD), and PFOA (dogs 0.37 ng/mL; horses 0.10 ng/mL). Regression analysis highlighted alkaline phosphatase, glucose, and globulin proteins in dogs and gamma glutamyl transferase in horses as potential biomarkers associated with PFAS exposure. Overall, the results of this study support the utility of companion animal and livestock species as sentinels of PFAS exposure differences inside and outside of the home. As in humans, renal and hepatic health in domestic animals may be sensitive to long-term PFAS exposures.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Humans , Dogs , Horses , Animals , North Carolina , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Drinking Water/chemistry , Biomarkers , Alkanesulfonic Acids/analysis , Environmental Pollutants/analysis
3.
Environ Sci Technol ; 56(6): 3441-3451, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35175744

ABSTRACT

As concerns over exposure to per- and polyfluoroalkyl substances (PFAS) are continually increasing, novel methods to monitor their presence and modifications are greatly needed, as some have known toxic and bioaccumulative characteristics while most have unknown effects. This task however is not simple, as the Environmental Protection Agency (EPA) CompTox PFAS list contains more than 9000 substances as of September 2020 with additional substances added continually. Nontargeted analyses are therefore crucial to investigating the presence of this immense list of possible PFAS. Here, we utilized archived and field-sampled pine needles as widely available passive samplers and a novel nontargeted, multidimensional analytical method coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to evaluate the temporal and spatial presence of numerous PFAS. Over 70 PFAS were detected in the pine needles from this study, including both traditionally monitored legacy perfluoroalkyl acids (PFAAs) and their emerging replacements such as chlorinated derivatives, ultrashort chain PFAAs, perfluoroalkyl ether acids including hexafluoropropylene oxide dimer acid (HFPO-DA, "GenX") and Nafion byproduct 2, and a cyclic perfluorooctanesulfonic acid (PFOS) analog. Results from this study provide critical insight related to PFAS transport, contamination, and reduction efforts over the past six decades.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/analysis , Chromatography, Liquid , Fluorocarbons/analysis , United States , United States Environmental Protection Agency
4.
Ecotoxicology ; 31(7): 1137-1146, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35918620

ABSTRACT

Mercury (Hg) is a widespread and harmful persistent pollutant of aquatic ecosystems. Except for the northern most populations of American alligators (Alligator Mississippiensis) found in North Carolina, the potential adverse health impacts of Hg on ecosystems and humans consuming alligator meat have been studied for over three decades. Now that alligators are being recreationally hunted and consumed across their range, it is especially important to monitor toxic contaminant levels to best understand possible adverse impacts of exposures on alligator populations and human health. In this study, we determined blood Hg concentrations in American alligators from an urbanized site in Wilmington, NC, a nearby site at Lake Waccamaw, NC, and a site on the St Johns River in Florida. Median blood total Hg (tHg) concentrations were particularly high at Lake Waccamaw (526 ng/g, range 152-946 ng/g), resulting in median muscle concentrations (0.48 mg/kg, range 0.13-0.88 mg/kg) well above US EPA screening values for fish consumption. Median concentrations at the Wilmington site (69 ng/g, range 22-336 ng/g) were generally low, and Hg concentrations from the St Johns River site (143 ng/g, range 54-244 ng/g) were comparable to those reported in previous studies. Analysis of relationships between tHg concentrations and a panel of blood chemistry biomarkers found only modest concentration-dependent impact on biomarkers of renal function. The results of this study reveal that local environmental factors greatly impact Hg bioaccumulation in alligators, findings that reaffirm local contaminant biomonitoring in alligator populations will be critical for affective management and determination of guidelines for safe consumption of harvested alligators.


Subject(s)
Alligators and Crocodiles , Mercury , Animals , Ecosystem , Environmental Monitoring , Florida , Humans , Mercury/analysis , North Carolina
5.
Environ Sci Technol ; 55(18): 12291-12301, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34495656

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of synthetic chemicals that accumulate in the environment. Many proteins, including the primary human serum transport protein albumin (HSA), bind PFAS. The predictive power of physiologically based pharmacokinetic modeling approaches is currently limited by a lack of experimental data defining albumin-binding properties for most PFAS. A novel thermal denaturation assay was optimized to evaluate changes in the thermal stability of HSA in the presence of increasing concentrations of known ligands and a structurally diverse set of PFAS. Assay performance was initially evaluated for fatty acids and HSA-binding drugs ibuprofen and warfarin. Concentration-response relationships were determined and dissociation constants (Kd) for each compound were calculated using regression analysis of the dose-dependent changes in HSA melting temperature. Estimated Kd values for HSA binding of octanoic acid, decanoic acid, hexadecenoic acid, ibuprofen, and warfarin agreed with established values. The binding affinities for 24 PFAS that included perfluoroalkyl carboxylic acids (C4-C12), perfluoroalkyl sulfonic acids (C4-C8), mono- and polyether perfluoroalkyl ether acids, and polyfluoroalkyl fluorotelomer substances were determined. These results demonstrate the utility of this differential scanning fluorimetry assay as a rapid high-throughput approach for determining the relative protein-binding properties and identification of chemical structures involved in binding for large numbers of structurally diverse PFAS.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Carboxylic Acids , Fluorometry , Humans , Serum Albumin, Human , Sulfonic Acids
6.
Toxicol Pathol ; 47(8): 1049-1071, 2019 12.
Article in English | MEDLINE | ID: mdl-31833458

ABSTRACT

During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.


Subject(s)
Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Reproduction/drug effects , Animals , Congresses as Topic , Female , Fetal Development/drug effects , Heart/drug effects , Heart/embryology , Humans , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Species Specificity , Testis/drug effects , Testis/embryology , Testis/pathology , Uterus/drug effects , Uterus/embryology , Uterus/pathology
7.
Environ Health ; 14: 13, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25971433

ABSTRACT

Experimental studies investigating the effects of endocrine disruptors frequently identify potential unconventional dose-response relationships called non-monotonic dose-response (NMDR) relationships. Standardized approaches for investigating NMDR relationships in a risk assessment context are missing. The aim of this work was to develop criteria for assessing the strength of NMDR relationships. A literature search was conducted to identify published studies that report NMDR relationships with endocrine disruptors. Fifty-one experimental studies that investigated various effects associated with endocrine disruption elicited by many substances were selected. Scoring criteria were applied by adaptation of an approach previously used for identification of hormesis-type dose-response relationships. Out of the 148 NMDR relationships analyzed, 82 were categorized with this method as having a "moderate" to "high" level of plausibility for various effects. Numerous modes of action described in the literature can explain such phenomena. NMDR can arise from numerous molecular mechanisms such as opposing effects induced by multiple receptors differing by their affinity, receptor desensitization, negative feedback with increasing dose, or dose-dependent metabolism modulation. A stepwise decision tree was developed as a tool to standardize the analysis of NMDR relationships observed in the literature with the final aim to use these results in a Risk Assessment purpose. This decision tree was finally applied to studies focused on the effects of bisphenol A.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Exposure , Environmental Monitoring/methods , Environmental Pollutants/toxicity , Dose-Response Relationship, Drug , Risk Assessment
8.
Toxicol Sci ; 199(1): 132-149, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38518100

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.


Subject(s)
Fluorocarbons , Protein Binding , Serum Albumin , Animals , Cattle , Humans , Rats , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Serum Albumin/metabolism , Serum Albumin/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Species Specificity , Swine
9.
Animals (Basel) ; 14(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998126

ABSTRACT

The sex of crocodilians is determined by the temperature to which the eggs, and hence the developing embryo are exposed during critical periods of development. Temperature-dependent sex determination is a process that occurs in all crocodilians and numerous other reptile taxa. The study of artificial incubation temperatures in different species of crocodiles and alligators has determined the specific temperature ranges that result in altered sex ratios. It has also revealed the precise temperature thresholds at which an equal number of males and females are generated, as well as the specific developmental period during which the sex of the hatchlings may be shifted. This review will examine the molecular basis of the sex-determination mechanism in crocodilians elucidated during recent decades. It will focus on the many patterns and theories associated with this process. Additionally, we will examine the consequences that arise after hatching due to changes in incubation temperatures, as well as the potential benefits and dangers of a changing climate for crocodilians who display sex determination based on temperature.

10.
Chemosphere ; 363: 142898, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032729

ABSTRACT

The recent application of non-targeted analysis (NTA) techniques in environmental monitoring has revealed numerous novel fluorinated species in surface water, wildlife, and humans in the Cape Fear River (CFR) region of North Carolina. In this study, we have re-examined archived alligator, striped bass, horse, and dog serum as well as archived seabird tissue data from previously reported exposure studies in order to extend the panel of detected novel PFAS. In this study, the compounds CF3-(OCF2)x-COOH, x = 6, 7, 8 (Abbreviated PFO6TeDA, PFO7HxDA, PFO8OcDA, respectively), and 6H-Perfluoro-3-oxa,4-methylhexanesulfonic acid (Nafion byproduct 6) were detected for the first time in environmental tissues even though these analytes were not previously detected in the CFR. Analytical standards were available for PFO6TeDA and Nafion Byproduct 6, and therefore, were quantitated in investigated tissues. PFO7HxDA and PFO8OcDA had no available standards and were semi-quantitated using NTA techniques. Of note, PFO6TeDA, PFO7HxDA, and PFO8OcDA were observed in alligator, bass, and seabird but not horse and dog. PFO6TeDA was detected at the highest frequency in all investigated tissues with PFO7HxDA and PFO8OcDA detected at lower frequencies. No Nafion Byproduct 6 values are reported in serum due to poor analytical reproducibility of the measurements. Seabird tissue to blood ratios suggests PFO6TeDA is highest in the heart, kidney, and liver and lowest in the brain. Overall, additional studies are needed to fully understand the potential impact of these additional novel PFAS on both wildlife and humans in the CFR region.


Subject(s)
Animals, Wild , Data Mining , Environmental Monitoring , Fluorocarbons , Animals , North Carolina , Environmental Monitoring/methods , Fluorocarbons/blood , Fluorocarbons/analysis , Pets , Rivers/chemistry , Dogs , Humans , Water Pollutants, Chemical/analysis , Horses
11.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592230

ABSTRACT

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Subject(s)
Benzhydryl Compounds , Phenols , Humans , Food Safety , No-Observed-Adverse-Effect Level , Systematic Reviews as Topic
12.
J Biochem Mol Toxicol ; 27(2): 124-36, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23139171

ABSTRACT

Firemaster® 550 (FM 550), a fire-retardant mixture used in foam-based products, was recently identified as a common contaminant in household dust. The chemical structures of its principle components suggest they have endocrine disrupting activity, but nothing is known about their physiological effects at environmentally relevant exposure levels. The goal of this exploratory study was to evaluate accumulation, metabolism and endocrine disrupting effects of FM 550 in rats exposed to 100 or 1000 µg/day across gestation and lactation. FM 550 components accumulated in tissues of exposed dams and offspring and induced phenotypic hallmarks associated with metabolic syndrome in the offspring. Effects included increased serum thyroxine levels and reduced hepatic carboxylesterease activity in dams, and advanced female puberty, weight gain, male cardiac hypertrophy, and altered exploratory behaviors in offspring. Results of this study are the first to implicate FM 550 as an endocrine disruptor and an obesogen at environmentally relevant levels.


Subject(s)
Endocrine System/metabolism , Flame Retardants/adverse effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/blood , Thyroxine/blood , Animals , Cardiomegaly/blood , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Endocrine System/pathology , Endocrine System/physiology , Female , Male , Obesity/blood , Obesity/chemically induced , Obesity/pathology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
13.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014292

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of over 8,000 chemicals that are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this differential scanning fluorimetry assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H,1H,2H,2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of serum albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and perfluoroalkyl ether congeners bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive toxicity assessments for PFAS.

14.
Toxicol Sci ; 191(1): 34-46, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36200916

ABSTRACT

Cadmium (Cd) exposure in adulthood is associated with nonalcoholic fatty liver disease (NAFLD), characterized by steatosis, inflammation, and fibrosis. The prevalence of NAFLD in children is increasing, suggesting a role for the developmental environment in programming susceptibility. However, the role of developmental Cd exposure in programming NAFLD and the underlying mechanisms remain unclear. We have proposed that imprinted genes are strong candidates for connecting the early life environment and later life disease. In support of this, we previously identified roles for the Imprinted Gene Network (IGN) and its regulator Zac1 in programming NAFLD in response to maternal metabolic dysfunction. Here, we test the hypothesis that developmental Cd exposure is sufficient to program NAFLD, and further, that this process is mediated by Zac1 and the IGN. Using mice, we show that developmental cadmium chloride (CdCl2) exposure leads to histological, biochemical, and molecular signatures of steatosis and fibrosis in juveniles. Transcriptomic analyses comparing livers of CdCl2-exposed and control mice show upregulation of Zac1 and the IGN coincident with disease presentation. Increased hepatic Zac1 expression is independent of promoter methylation and imprinting statuses. Finally, we show that over-expression of Zac1 in cultured hepatocytes is sufficient to induce lipid accumulation in a Pparγ-dependent manner and demonstrate direct binding of Zac1 to the Pparγ promoter. Our findings demonstrate that developmental Cd exposure is sufficient to program NAFLD in later life, and with our previous work, establish Zac1 and the IGN as key regulators of prosteatotic and profibrotic pathways, two of the major pathological hallmarks of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Cadmium , Cadmium Chloride/toxicity , PPAR gamma , Liver/metabolism , Fibrosis
15.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732276

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. The diverse structures of PFAS give them different chemical properties that influence their solubility in different environmental matrices and biological tissues. PFAS in drinking water have been extensively studied, but information on their presence in fish and other exposure routes is limited. To address this, a non-targeted analysis using liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was performed to evaluate PFAS in fish fillets from in central North Carolina and compare with PFAS data from previously published water. A total of 22 different PFAS were detected in the fillets, including only 4 of the PFAS reported in water. Both more PFAS types and higher concentrations were observed in fish caught near a known PFAS point-source compared to those from a reservoir used for drinking water and recreation. Median fillet PFOS levels were 54 ppb in fish closest to the point source and 14-20 ppb in fish from the reservoir. Thus, future PFAS monitoring should include both targeted and non-targeted analyses of both water and fish to increase understanding of human exposure risks and ecosystem impacts. SYNOPSIS: Fish fillet samples were collected from five sites in North Carolina. PFAS were detected in all samples and differences in analytes and abundances were observed at the different sites. GRAPHICAL ABSTRACT: For use in table of contents only.

16.
Environ Int ; 180: 108161, 2023 10.
Article in English | MEDLINE | ID: mdl-37758599

ABSTRACT

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Subject(s)
Food Contamination , Noncommunicable Diseases , Humans , Food Contamination/analysis , Public Health , Food Packaging , Food , Hazardous Substances/toxicity
17.
Int J Toxicol ; 31(6): 537-50, 2012.
Article in English | MEDLINE | ID: mdl-23160314

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting chemical that is ubiquitous in wild and built environments. Due to variability in study design, the disruptive effects of BPA have proven difficult to experimentally replicate. This study was designed to assess the disruptive actions of dietary BPA exposure, while carefully controlling for known confounders. Parental CD1 mice were acclimated to defined diet containing BPA (0.03, 0.3, 3, 30, or 300 ppm) or 17α-ethinyl estradiol (EE; 0.0001, 0.001, and 0.01 ppm) and bred to produce progeny (F1) that were maintained through adulthood on the same diet as the parents. In F1 females, uterine weights were increased in all EE and the 30-ppm BPA-exposure groups, demonstrating model sensitivity and estrogen-like actions of BPA. In BPA-exposed females, no treatment-related differences were observed in parental reproductive function, or in the timing of puberty and metabolic function in female offspring. In F1 males, modest changes in body weight, adiposity and glucose tolerance, consistent with improved metabolic function, were observed. Associated with increased prolactin and increased circulating testosterone levels, balanopreputial separation was accelerated by 0.03 and 3.0 ppm BPA and anogenital distance at postnatal day 21 was increased in males by 0.03 ppm BPA. Sperm counts were also increased with 3.0 ppm BPA exposures. Overall, BPA was found to have modest, sex specific endocrine disruptive effects on a variety of end points below the established no observed adverse effect level. The dose response characteristics for many of the effects were nonmonotonic and not predictable from high-dose extrapolations.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Phenols/toxicity , Animal Feed , Animals , Dose-Response Relationship, Drug , Female , Glucose Tolerance Test , Male , Maternal Exposure , Mice , Mice, Inbred Strains , No-Observed-Adverse-Effect Level , Obesity/chemically induced , Organ Size/drug effects , Paternal Exposure , Reproduction/drug effects , Sex Factors , Sexual Maturation/drug effects , Sperm Count , Spermatozoa/drug effects , Uterus/drug effects
18.
Toxicol Sci ; 187(2): 254-266, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35212737

ABSTRACT

In CD-1 mice, gestational-only exposure to cadmium (Cd) causes female-specific hepatic insulin resistance, metabolic disruption, and obesity. To evaluate whether sex differences in uptake and changes in essential metal concentrations contribute to metabolic outcomes, placental and liver Cd and essential metal concentrations were quantified in male and female offspring perinatally exposed to 500 ppb CdCl2. Exposure resulted in increased maternal liver Cd+2 concentrations (364 µg/kg) similar to concentrations found in non-occupationally exposed human liver. At gestational day (GD) 18, placental Cd and manganese concentrations were significantly increased in exposed males and females, and zinc was significantly decreased in females. Placental efficiency was significantly decreased in GD18-exposed males. Increases in hepatic Cd concentrations and a transient prenatal increase in zinc were observed in exposed female liver. Fetal and adult liver iron concentrations were decreased in both sexes, and decreases in hepatic zinc, iron, and manganese were observed in exposed females. Analysis of GD18 placental and liver metallothionein mRNA expression revealed significant Cd-induced upregulation of placental metallothionein in both sexes, and a significant decrease in fetal hepatic metallothionein in exposed females. In placenta, expression of metal ion transporters responsible for metal ion uptake was increased in exposed females. In liver of exposed adult female offspring, expression of the divalent cation importer (Slc39a14/Zip14) decreased, whereas expression of the primary exporter (Slc30a10/ZnT10) increased. These findings demonstrate that Cd can preferentially cross the female placenta, accumulate in the liver, and cause lifelong dysregulation of metal ion concentrations associated with metabolic disruption.


Subject(s)
Cation Transport Proteins , Placenta , Animals , Cadmium/toxicity , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Female , Homeostasis , Iron/metabolism , Liver/metabolism , Male , Manganese/metabolism , Manganese/toxicity , Metallothionein/genetics , Metallothionein/metabolism , Mice , Placenta/metabolism , Pregnancy , Zinc/toxicity
19.
Front Toxicol ; 4: 1010185, 2022.
Article in English | MEDLINE | ID: mdl-36337916

ABSTRACT

Surface and groundwater of the Cape Fear River basin in central and coastal North Carolina is contaminated with high levels of per- and polyfluoroalkyl substances (PFAS). Elevated levels of PFAS have also been found in blood of fish and wildlife from the Cape Fear River, and in the blood of human populations reliant on contaminated well or surface water from the Cape Fear River basin as a source of drinking water. While the public and environmental health impacts of long-term PFAS exposures are poorly understood, elevated blood concentrations of some PFAS are linked with immunotoxicity and increased incidence of some chronic autoimmune diseases in human populations. The goal of this One Environmental Health study was to evaluate PFAS exposure and biomarkers related to immune health in populations of American alligators (Alligator mississippiensis), a protected and predictive sentinel species of adverse effects caused by persistent toxic pollutants. We found that serum PFAS concentrations in alligator populations from the Cape Fear River were increased compared to a reference population of alligators from the adjoining Lumber River basin. The elevated serum PFAS concentrations in the Cape Fear River alligators were associated with increased innate immune activities, and autoimmune-like phenotypes in this population. In addition to evidence of significantly higher double stranded-DNA binding autoantibodies in adult Cape Fear River alligators, our qRT-PCR analysis found remarkably high induction of Interferon-α signature genes implicated in the pathology of human autoimmune disease. We interpret the association of increased PFAS exposure with disrupted immune functions to suggest that PFAS broadly alters immune activities resulting in autoimmune-like pathology in American alligators. This work substantiates and extends evidence from experimental models and human epidemiology studies showing that some PFAS are immune toxicants.

20.
Front Toxicol ; 4: 881584, 2022.
Article in English | MEDLINE | ID: mdl-35480070

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.

SELECTION OF CITATIONS
SEARCH DETAIL