Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Entropy (Basel) ; 21(7)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-33267388

ABSTRACT

An optimal feedback controller for a given Markov decision process (MDP) can in principle be synthesized by value or policy iteration. However, if the system dynamics and the reward function are unknown, a learning agent must discover an optimal controller via direct interaction with the environment. Such interactive data gathering commonly leads to divergence towards dangerous or uninformative regions of the state space unless additional regularization measures are taken. Prior works proposed bounding the information loss measured by the Kullback-Leibler (KL) divergence at every policy improvement step to eliminate instability in the learning dynamics. In this paper, we consider a broader family of f-divergences, and more concretely α -divergences, which inherit the beneficial property of providing the policy improvement step in closed form at the same time yielding a corresponding dual objective for policy evaluation. Such entropic proximal policy optimization view gives a unified perspective on compatible actor-critic architectures. In particular, common least-squares value function estimation coupled with advantage-weighted maximum likelihood policy improvement is shown to correspond to the Pearson χ 2 -divergence penalty. Other actor-critic pairs arise for various choices of the penalty-generating function f. On a concrete instantiation of our framework with the α -divergence, we carry out asymptotic analysis of the solutions for different values of α and demonstrate the effects of the divergence function choice on common standard reinforcement learning problems.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 5534-5548, 2023 May.
Article in English | MEDLINE | ID: mdl-36260585

ABSTRACT

Solving the Hamilton-Jacobi-Bellman equation is important in many domains including control, robotics and economics. Especially for continuous control, solving this differential equation and its extension the Hamilton-Jacobi-Isaacs equation, is important as it yields the optimal policy that achieves the maximum reward on a give task. In the case of the Hamilton-Jacobi-Isaacs equation, which includes an adversary controlling the environment and minimizing the reward, the obtained policy is also robust to perturbations of the dynamics. In this paper we propose continuous fitted value iteration (cFVI) and robust fitted value iteration (rFVI). These algorithms leverage the non-linear control-affine dynamics and separable state and action reward of many continuous control problems to derive the optimal policy and optimal adversary in closed form. This analytic expression simplifies the differential equations and enables us to solve for the optimal value function using value iteration for continuous actions and states as well as the adversarial case. Notably, the resulting algorithms do not require discretization of states or actions. We apply the resulting algorithms to the Furuta pendulum and cartpole. We show that both algorithms obtain the optimal policy. The robustness Sim2Real experiments on the physical systems show that the policies successfully achieve the task in the real-world. When changing the masses of the pendulum, we observe that robust value iteration is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm. Videos of the experiments are shown at https://sites.google.com/view/rfvi.

SELECTION OF CITATIONS
SEARCH DETAIL