ABSTRACT
BACKGROUND: Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS: We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS: Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS: These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.
Subject(s)
Carotid Artery Injuries , Thrombosis , Rats , Animals , Fibronectins/pharmacology , Carotid Artery Injuries/pathology , Cadherins , Carotid Arteries/pathology , Hyperplasia/pathology , Peptides/pharmacology , Thrombosis/pathologyABSTRACT
Despite recent advancements in vascular disease treatments, thrombosis and poor long-term vessel patency remain significant barriers to effective endovascular intervention. Current balloon angioplasty and stenting techniques effectively restore acute blood flow in occluded vessels but have persistent limitations. Damage to the arterial endothelium caused by injury during catheter tracking triggers neointimal hyperplasia and the release of proinflammatory factors leading to increased risk of thrombosis and restenosis. Antirestenotic agents commonly delivered on angioplasty balloons and stents have lowered arterial restenosis rates, but the absence of cell type selectivity significantly delays critical endothelium repair. Targeted delivery of biomolecular therapeutics, coupled with engineered nanoscale excipients, has the potential to redefine cardiovascular interventions by improving long-term efficacy, limiting off-target effects, and reducing costs compared with conventional clinical standards of care. This review analyzes current forms of localized vascular drug delivery, emerging nanoscale therapeutic and excipient strategies, and provides recommendations for future areas of study to advance the treatment of vascular disease through innovations in nanotechnology.
Subject(s)
Angioplasty, Balloon , Thrombosis , Vascular Diseases , Humans , Angioplasty, Balloon/adverse effects , Angioplasty, Balloon/methods , Stents , Constriction, Pathologic/etiology , Vascular Diseases/etiology , Thrombosis/etiology , Nanotechnology , Treatment OutcomeABSTRACT
This study reports a new methodology for right heart imaging by ultrasound in mice under right ventricular (RV) pressure overload. Pulmonary artery constriction (PAC) or sham surgeries were performed on C57BL/6 male mice at 8 wk of age. Ultrasound imaging was conducted at 2, 4, and 8 wk postsurgery using both classical and advanced ultrasound imaging modalities including electrocardiogram (ECG)-based kilohertz visualization, anatomical M-mode, and strain imaging. Based on pulsed Doppler, the PAC group demonstrated dramatically enhanced pressure gradient in the main pulmonary artery (MPA) as compared with the sham group. By the application of advanced imaging modalities in novel short-axis views of the ventricles, the PAC group demonstrated increased thickness of RV free wall, enlarged RV chamber, and reduced RV fractional shortening compared with the sham group. The PAC group also showed prolonged RV contraction, asynchronous interplay between RV and left ventricle (LV), and passive leftward motion of the interventricular septum (IVS) at early diastole. Consequently, the PAC group exhibited prolongation of LV isovolumic relaxation time, without change in LV wall thickness or systolic function. Significant correlations were found between the maximal pressure gradient in MPA measured by Doppler and the RV systolic pressure by catheterization, as well as the morphological and functional parameters of RV by ultrasound.NEW & NOTEWORTHY The established protocol overcomes the challenges in right heart imaging in mice, thoroughly elucidating the changes of RV, the dynamics of IVS, and the impact on LV and provides new insights into the pathophysiological mechanism of RV remodeling.
Subject(s)
Ventricular Dysfunction, Right , Ventricular Remodeling , Male , Animals , Mice , Mice, Inbred C57BL , Heart , Heart Ventricles/diagnostic imaging , Ultrasonography , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Pressure/physiology , Ventricular Function, RightABSTRACT
[Figure: see text].
Subject(s)
Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Muscle, Smooth, Vascular/metabolism , Plaque, Atherosclerotic/metabolism , Actins/genetics , Actins/metabolism , Animals , Collagen/genetics , Collagen/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Gene Deletion , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Synthases/genetics , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , PhenotypeABSTRACT
Pulmonary hypertension (PH) is a multifaceted condition characterized by elevated pulmonary arterial pressure, which can result in right ventricular dysfunction and failure. Disorders of lung development can present with secondary PH, which is a leading cause of mortality in infants with bronchopulmonary dysplasia (BPD). DDR1 (discoidin domain receptor 1) is a collagen-binding receptor that regulates tissue fibrosis and inflammation and controls cellular growth and migration. However, the roles of DDR1 in lung development or the pathogenesis of PH are unknown. Studying mice with a DDR1 deletion (Ddr1-/-), we have noted 35% mortality between 1 and 4 months of age, and we demonstrate that DDR1 deficiency results in reduced right ventricular contractility and muscularization of distal pulmonary arteries, consistent with PH. Pathology analysis revealed enlarged alveolar spaces in Ddr1-/- mice by Postnatal Day 7, consistent with impaired alveolar development. Gene expression analysis showed that Ddr1-/- mice have reduced concentrations of alveologenesis factors and epithelial-to-mesenchymal transition markers. Mechanistic studies in vitro confirmed that DDR1 mediated epithelial-to-mesenchymal transition, migration, and growth of alveolar epithelial cells. Taken together, these data suggest that DDR1 plays important roles mediating alveolarization during lung development. Our studies also describe a new model of spontaneous PH and bronchopulmonary dysplasia in mice.
Subject(s)
Bronchopulmonary Dysplasia , Discoidin Domain Receptor 1 , Hypertension, Pulmonary , Animals , Humans , Infant, Newborn , Mice , Discoidin Domain Receptor 1/genetics , Discoidin Domain Receptor 1/metabolism , Epithelial-Mesenchymal Transition/physiology , FibrosisABSTRACT
OBJECTIVE: Vascular calcification is a pathology characterized by arterial mineralization, which is a common late-term complication of atherosclerosis that independently increases the risk of adverse cardiovascular events by fourfold. A major source of calcifying cells is transdifferentiating vascular smooth muscle cells (VSMCs). Previous studies showed that deletion of the collagen-binding receptor, DDR1 (discoidin domain receptor-1), attenuated VSMC calcification. Increased matrix stiffness drives osteogenesis, and DDR1 has been implicated in stiffness sensing in other cell types; however, the role of DDR1 as a mechanosensor in VSMCs has not been investigated. Here, we test the hypothesis that DDR1 senses increased matrix stiffness and promotes VSMC transdifferentiation and calcification. Approach and Results: Primary VSMCs isolated from Ddr1+/+ (wild-type) and Ddr1-/- (knockout) mice were studied on collagen-I-coated silicon substrates of varying stiffness, culturing in normal or calcifying medium. DDR1 expression and phosphorylation increased with increasing stiffness, as did in vitro calcification, nuclear localization of Runx2 (Runt-related transcription factor 2), and expression of other osteochondrocytic markers. By contrast, DDR1 deficient VSMCs were not responsive to stiffness and did not undergo transdifferentiation. DDR1 regulated stress fiber formation and RhoA (ras homolog family member A) activation through the RhoGEF (rho guanine nucleotide exchange factor), Vav2. Inhibition of actomyosin contractility reduced Runx2 activation and attenuated in vitro calcification in wild-type VSMCs. Finally, a novel positive feedforward loop was uncovered between DDR1 and actomyosin contractility, important in regulating DDR1 expression, clustering, and activation. CONCLUSIONS: This study provides mechanistic insights into DDR1 mechanosignaling and shows that DDR1 activity and actomyosin contractility are interdependent in mediating stiffness-dependent increases in VSMC calcification.
Subject(s)
Atherosclerosis/enzymology , Cell Transdifferentiation , Discoidin Domain Receptor 1/metabolism , Extracellular Matrix/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Osteogenesis , Vascular Calcification/enzymology , rhoA GTP-Binding Protein/metabolism , Actomyosin/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Discoidin Domain Receptor 1/deficiency , Discoidin Domain Receptor 1/genetics , Disease Models, Animal , Extracellular Matrix/pathology , Mechanotransduction, Cellular , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathologySubject(s)
Disease Models, Animal , Periodicals as Topic , Animals , Humans , Biomedical Research , Editorial PoliciesABSTRACT
Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1-KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro, and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth.
Subject(s)
Adipose Tissue/metabolism , Breast Neoplasms/metabolism , Discoidin Domain Receptor 1/metabolism , Interleukin-6/metabolism , Stromal Cells/metabolism , Adipose Tissue/drug effects , Adipose Tissue/immunology , Adipose Tissue/pathology , Animals , Antibodies, Neutralizing/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/metabolism , Discoidin Domain Receptor 1/genetics , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/immunology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/pathology , Transplantation, Isogeneic , Tumor Burden/drug effects , Tumor Cells, Cultured , Tumor Microenvironment/drug effectsABSTRACT
Objective- Vascular calcification is a common and severe complication in patients with atherosclerosis which is exacerbated by type 2 diabetes mellitus. Our laboratory recently reported that the collagen receptor discoidin domain receptor 1 (DDR1) mediates vascular calcification in atherosclerosis; however, the underlying mechanisms are unknown. During calcification, vascular smooth muscle cells transdifferentiate into osteoblast-like cells, in a process driven by the transcription factor RUNX2 (runt-related transcription factor 2). DDR1 signals via the phosphoinositide 3-kinase/Akt pathway, which is also central to insulin signaling, and upstream of RUNX2, and this led us to investigate whether DDR1 promotes vascular calcification in diabetes mellitus via this pathway. Approach and Results- Ddr1+/+ ; Ldlr-/- (single knock-out) and Ddr1-/- ; Ldlr-/- (double knock-out) mice were placed on high-fat diet for 12 weeks to induce atherosclerosis and type 2 diabetes mellitus. Von Kossa staining revealed reduced vascular calcification in the aortic arch of double knock-out compared with single knock-out mice. Immunofluorescent staining for RUNX2 was present in calcified plaques of single knock-out but not double knock-out mice. Primary vascular smooth muscle cells obtained from Ddr1+/+ and Ddr1-/- mice were cultured in calcifying media. DDR1 deletion resulted in reduced calcification, a 74% reduction in p-Akt levels, and an 88% reduction in RUNX2 activity. Subcellular fractionation revealed a 77% reduction in nuclear RUNX2 levels in Ddr1-/- vascular smooth muscle cells. DDR1 associated with phosphoinositide 3-kinase, and treatment with the inhibitor wortmannin attenuated calcification. Finally, we show that DDR1 is important to maintain the microtubule cytoskeleton which is required for the nuclear localization of RUNX2. Conclusions- These novel findings demonstrate that DDR1 promotes RUNX2 activity and atherosclerotic vascular calcification in diabetes mellitus via phosphoinositide 3-kinase/Akt signaling.
Subject(s)
Atherosclerosis/enzymology , Core Binding Factor Alpha 1 Subunit/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetic Angiopathies/enzymology , Discoidin Domain Receptor 1/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Calcification/enzymology , Active Transport, Cell Nucleus , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Diet, High-Fat , Discoidin Domain Receptor 1/deficiency , Discoidin Domain Receptor 1/genetics , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction , Vascular Calcification/genetics , Vascular Calcification/pathologyABSTRACT
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , Collagen/genetics , Myocytes, Smooth Muscle/pathology , Aging/pathology , Animals , Aorta/cytology , Cell Lineage , Diet, Atherogenic , Female , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myography , Vascular StiffnessABSTRACT
OBJECTIVE: Collagen accumulation and calcification are major determinants of atherosclerotic plaque stability. Extracellular vesicle (EV)-derived microcalcifications in the collagen-poor fibrous cap may promote plaque rupture. In this study, we hypothesize that the collagen receptor discoidin domain receptor-1 (DDR-1) regulates collagen deposition and release of calcifying EVs by vascular smooth muscle cells (SMCs) through the transforming growth factor-ß (TGF-ß) pathway. APPROACH AND RESULTS: SMCs from the carotid arteries of DDR-1(-/-) mice and wild-type littermates (n=5-10 per group) were cultured in normal or calcifying media. At days 14 and 21, SMCs were harvested and EVs isolated for analysis. Compared with wild-type, DDR-1(-/-) SMCs exhibited a 4-fold increase in EV release (P<0.001) with concomitantly elevated alkaline phosphatase activity (P<0.0001) as a hallmark of EV calcifying potential. The DDR-1(-/-) phenotype was characterized by increased mineralization (Alizarin Red S and Osteosense, P<0.001 and P=0.002, respectively) and amorphous collagen deposition (P<0.001). We further identified a novel link between DDR-1 and the TGF-ß pathway previously implicated in both fibrotic and calcific responses. An increase in TGF-ß1 release by DDR-1(-/-) SMCs in calcifying media (P<0.001) stimulated p38 phosphorylation (P=0.02) and suppressed activation of Smad3. Inhibition of either TGF-ß receptor-I or phospho-p38 reversed the fibrocalcific DDR-1(-/-) phenotype, corroborating a causal relationship between DDR-1 and TGF-ß in EV-mediated vascular calcification. CONCLUSIONS: DDR-1 interacts with the TGF-ß pathway to restrict calcifying EV-mediated mineralization and fibrosis by SMCs. We therefore establish a novel mechanism of cell-matrix homeostasis in atherosclerotic plaque formation.
Subject(s)
Atherosclerosis/metabolism , Collagen/metabolism , Extracellular Vesicles/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Calcification/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Discoidin Domain Receptor 1 , Disease Models, Animal , Female , Fibrosis , Genetic Predisposition to Disease , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Osteogenesis , Phenotype , Phosphorylation , Plaque, Atherosclerotic , Protein Serine-Threonine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/deficiency , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Smad3 Protein/metabolism , Time Factors , Vascular Calcification/genetics , Vascular Calcification/pathology , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
It has been argued whether insulin accelerates or prevents atherosclerosis. Although results from in vitro studies have been conflicting, recent in vivo mice studies demonstrated antiatherogenic effects of insulin. Insulin is a known activator of endothelial nitric oxide synthase (NOS), leading to increased production of NO, which has potent antiatherogenic effects. We aimed to examine the role of NOS in the protective effects of insulin against atherosclerosis. Male apolipoprotein E-null mice (8 wk old) fed a high-cholesterol diet (1.25% cholesterol) were assigned to the following 12-wk treatments: control, insulin (0.05 U/day via subcutaneous pellet), N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME, via drinking water at 100 mg/l), and insulin plus l-NAME. Insulin reduced atherosclerotic plaque burden in the descending aorta by 42% compared with control (plaque area/aorta lumen area: control, 16.5 ± 1.9%; insulin, 9.6 ± 1.3%, P < 0.05). Although insulin did not decrease plaque burden in the aortic sinus, macrophage accumulation in the plaque was decreased by insulin. Furthermore, insulin increased smooth muscle actin and collagen content and decreased plaque necrosis, consistent with increased plaque stability. In addition, insulin treatment increased plasma NO levels, decreased inducible NOS staining, and tended to increase phosphorylated vasodilator-stimulated phosphoprotein staining in the plaques of the aortic sinus. All these effects of insulin were abolished by coadministration of l-NAME, whereas l-NAME alone showed no effect. Insulin also tended to increase phosphorylated endothelial NOS and total neuronal NOS staining, effects not modified by l-NAME. In conclusion, we demonstrate that insulin treatment decreases atherosclerotic plaque burden and increases plaque stability through NOS-dependent mechanisms.
Subject(s)
Aorta/drug effects , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/drug effects , Plaque, Atherosclerotic/metabolism , Actins/drug effects , Actins/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/genetics , Collagen/drug effects , Collagen/metabolism , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Knockout , Necrosis , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type I/drug effects , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Phosphoproteins/drug effects , Phosphoproteins/metabolism , Plaque, Atherosclerotic/pathology , Sinus of Valsalva/drug effects , Sinus of Valsalva/metabolism , Sinus of Valsalva/pathologyABSTRACT
The rapid proliferation of smooth muscle cells (SMCs) contributes to atherosclerotic plaque formation and neointimal thickening in other occlusive vascular diseases. In cancer cells, rapid cell proliferation is often accompanied by DNA damage, division aberrations, elevated cell apoptosis, or accumulation of abnormal cells. However, little is known about division fidelity in vascular disorders. We have analyzed the cell division fidelity during the rapid SMC proliferation that occurs after balloon injury of the rat carotid artery using en face confocal microscopy of the full thickness of the vessel wall. SMCs newly migrated to the neointima had increased division defects and increased apoptosis compared with SMCs in the subjacent media, despite comparable mitosis rates. Protein kinase Cα and the receptor for hyaluronic acid-mediated motility (RHAMM) regulate division fidelity in cultured neointimal SMCs. The centrosomal targeting sequence of RHAMM was required for localization to the mitotic spindle and spindle organization. Dynein and RHAMM colocalized in the spindle area and were part of a complex. Dynein inhibition caused spindle defects similar to RHAMM or protein kinase C inhibition. Our study uncovered abnormalities in rapidly proliferating SMCs after arterial injury that could contribute to the growth of atherosclerotic plaques and reduce plaque stability by triggering apoptosis, and it described a mechanism by which RHAMM and dynein coordinate division fidelity in neointimal SMCs.
Subject(s)
Atherosclerosis/pathology , Carotid Arteries/pathology , Cell Division , Disease Progression , Animals , Apoptosis , Carotid Arteries/metabolism , Cell Nucleus Division , Cell Proliferation , Centrosome/metabolism , Chromosome Segregation , Cytokinesis , Dyneins/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/metabolism , Male , Mitotic Index , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Protein Binding , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/metabolism , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Spindle Apparatus/metabolism , Tunica Media/metabolism , Tunica Media/pathologyABSTRACT
Collagens in the atherosclerotic plaque signal regulation of cell behavior and provide tensile strength to the fibrous cap. Type VIII collagen, a short-chain collagen, is up-regulated in atherosclerosis; however, little is known about its functions in vivo. We studied the response to arterial injury and the development of atherosclerosis in type VIII collagen knockout mice (Col8(-/-) mice). After wire injury of the femoral artery, Col8(-/-) mice had decreased vessel wall thickening and outward remodeling when compared with Col8(+/+) mice. We discovered that apolipoprotein E (ApoE) is an endogenous repressor of the Col8a1 chain, and, therefore, in ApoE knockout mice, type VIII collagen was up-regulated. Deficiency of type VIII collagen in ApoE(-/-) mice (Col8(-/-);ApoE(-/-)) resulted in development of plaques with thin fibrous caps because of decreased smooth muscle cell migration and proliferation and reduced accumulation of fibrillar type I collagen. In contrast, macrophage accumulation was not affected, and the plaques had large lipid-rich necrotic cores. We conclude that in atherosclerosis, type VIII collagen is up-regulated in the absence of ApoE and functions to increase smooth muscle cell proliferation and migration. This is an important mechanism for formation of a thick fibrous cap to protect the atherosclerotic plaque from rupture.
Subject(s)
Atherosclerosis/pathology , Collagen Type VIII/physiology , Plaque, Atherosclerotic/pathology , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/physiology , Atherosclerosis/metabolism , Cell Movement/physiology , Cell Proliferation , Cells, Cultured , Collagen/metabolism , Collagen Type VIII/deficiency , Collagen Type VIII/genetics , Elastin/metabolism , Female , Femoral Artery/injuries , Gelatinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Necrosis , Plaque, Atherosclerotic/metabolism , RNA, Messenger/genetics , Signal Transduction/physiology , Up-Regulation/physiologyABSTRACT
Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.
Subject(s)
Collagen Type VIII , Extracellular Matrix , Signal Transduction , Vascular Diseases , Humans , Animals , Extracellular Matrix/metabolism , Vascular Diseases/metabolism , Vascular Diseases/genetics , Vascular Diseases/pathology , Collagen Type VIII/metabolism , Collagen Type VIII/geneticsABSTRACT
Degradable polar hydrophobic ionic polyurethanes (D-PHI) are an emerging class of biomaterials with particular significance for blood-contacting applications due to their immunomodulatory effects and highly customizable block chemistry. In this manuscript, D-PHI polymer was formulated as a nanoparticle excipient for the first time by inverse emulsion polymerization. The nanoparticles were optimized with consideration of diameter, surface charge, size variability, and yield as a delivery vehicle for a custom vascular therapeutic peptide. A layer-by-layer (LBL) surface modification technique using poly-L-lysine was integrated within the nanoparticle design to optimize therapeutic loading efficiency. Solvent pH played a pivotal role in emulsion micelle formation, LBL polymer secondary structure, and the polymer functional group interactions critical for high therapeutic loading. The resulting nanoparticle platform met target size (200 ± 20 nm), polydispersity (<0.07), and storage stability standards, was nontoxic, and did not affect therapeutic peptide bioactivity in vitro. Surface-modified D-PHI nanoparticles can be reproducibly manufactured at low cost, generating a highly customizable excipient platform suitable for delivery of biomolecular therapeutics. These nanoparticles have potential applications in vascular drug delivery via localized infusion, drug eluting stents, and drug-coated angioplasty balloons. STATEMENT OF SIGNIFICANCE: Nanoscale excipients have become critical in the delivery of many therapeutics to enhance drug stability and targeted biodistribution through careful design of nanoparticle composition, surface chemistry, and size. This manuscript describes the development of a nanoparticle excipient derived from an immunomodulatory degradable polar hydrophobic ionic polyurethane, in combination with a layer-by-layer surface modification approach utilizing poly-L-lysine, to transport a mimetic peptide targeting smooth muscle cell migration in vascular disease. The nanoparticle platform draws on the effect of pH to maximize drug loading and tailor particle properties. The low cost and easily reproducible system presents a highly customizable platform that can be adapted for therapeutic delivery across a wide range of clinical indications.
Subject(s)
Hydrophobic and Hydrophilic Interactions , Nanoparticles , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/chemical synthesis , Nanoparticles/chemistry , Humans , Surface Properties , Ions , Peptides/chemistry , Animals , Blood Vessels/drug effectsABSTRACT
Cadherins aggregate and stabilize cell-cell junctions through interactions with adjacent cells. In addition, N-cadherin and E-cadherin concentrate at free edges or at the lamellipodia of migrating cells and are found within large vesicles called macropinosomes, which develop from membrane ruffles. The binding properties of cadherins have not previously been associated with the localization of cadherins at membrane ruffles; however, we report that the dorsal, ventral and lateral membrane contacts that occur as a result of the overlap of membrane ruffles aggregate N-cadherin, and that both N-cadherin and E-cadherin promote macropinosome closure and fluid-phase uptake in macropinosomes. These data reveal a previously unsuspected function for cadherin-mediated cell-cell adhesion molecules in the closure of cell-autonomous membrane contacts at membrane ruffles, resulting in macropinocytosis.
Subject(s)
Cadherins/physiology , Cell Communication/physiology , Pinocytosis/physiology , Animals , Becaplermin , Cadherins/metabolism , Cell Adhesion/physiology , Cell Communication/drug effects , Cell Line , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Dextrans/metabolism , Humans , Mice , Muscle, Smooth/cytology , Muscle, Smooth/metabolism , Pinocytosis/drug effects , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-sis , Pseudopodia/drug effects , Pseudopodia/metabolismABSTRACT
UNLABELLED: In vitro, insulin has both growth-promoting and vasculoprotective effects. In vivo, the effect of insulin is mainly protective. Insulin treatment (3 U/day) decreases smooth muscle cell (SMC) migration and neointimal growth after carotid angioplasty in normal rats maintained at normoglycemia by oral glucose. SMC migration requires limited proteolysis of the extracellular matrix, which is mediated by matrix metalloproteinases (MMPs). In this study, we investigated the effects of normoglycemic hyperinsulinemia on MMP activity after balloon angioplasty. Rats were divided into three groups: (1) control implants and tap water; (2) control implants and oral glucose, and (3) insulin implants (3 U/day) and oral glucose. RESULTS: Gelatin zymography revealed that insulin reduced the gelatinolytic activity of pro-MMP-2 by 46% (p < 0.05), MMP-2 by 44% (p < 0.05) and MMP-9 by 51% (p < 0.05) compared to controls after arterial injury. Insulin also reduced mRNA levels of MMP-2 (p < 0.05) and MMP-9 (p < 0.05) and protein levels of MMP-2 (p < 0.05). In contrast, there were no significant changes in membrane-type 1 MMP protein and tissue inhibitors of MMP activity after insulin treatment. Thus, these results suggest a mechanism by which insulin inhibits SMC migration and supports a vasculoprotective role for insulin in vivo.
Subject(s)
Carotid Artery Injuries/drug therapy , Carotid Artery, Common/drug effects , Insulin/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Vascular System Injuries/drug therapy , Administration, Oral , Angioplasty, Balloon , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Carotid Artery Injuries/enzymology , Carotid Artery Injuries/etiology , Carotid Artery, Common/enzymology , Disease Models, Animal , Down-Regulation , Drug Implants , Gene Expression Regulation, Enzymologic/drug effects , Glucose/administration & dosage , Insulin/administration & dosage , Insulin/blood , Male , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinases/metabolism , Vascular System Injuries/enzymology , Vascular System Injuries/etiologySubject(s)
Atherosclerosis , Vascular Calcification , Biomarkers , Humans , Interleukin-1beta , MacrophagesABSTRACT
Directed migration of smooth muscle cells (SMCs) from the media to the intima in arteries occurs during atherosclerotic plaque formation and during restenosis after angioplasty or stent application. The polarized orientation of the microtubule-organizing center (MTOC) is a key determinant of this process, and we therefore investigated factors that regulate MTOC polarity in vascular SMCs. SMCs migrating in vivo from the medial to the intimal layer of the rat carotid artery following balloon catheter injury were rear polarized, with the MTOC located posterior of the nucleus. In tissue culture, migrating neointimal cells maintained rear polarization, whereas medial cells were front polarized. Using phosphoproteomic screening and mass spectrometry, we identified ARPC5 and RHAMM as protein kinase C (PKC)-phosphorylated proteins associated with rear polarization of the MTOC in neointimal SMCs. RNA silencing of ARPC5 and RHAMM, PKC inhibition, and transfection with a mutated nonphosphorylatable ARPC5 showed that these proteins regulate rear polarization by organizing the actin and microtubule cytoskeletons in neointimal SMCs. Both ARPC5 and RHAMM, in addition to PKC, were required for migration of neointimal SMCs.