Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Neuroimage ; 103: 334-348, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25264227

ABSTRACT

We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1ß (IL-1ß C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.


Subject(s)
Aging/genetics , Aging/pathology , Brain/pathology , Individuality , Inflammation/genetics , Adult , Aged , Female , Genotype , Humans , Image Interpretation, Computer-Assisted , Inflammation/complications , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Polymorphism, Single Nucleotide , Young Adult
2.
Antimicrob Agents Chemother ; 40(6): 1467-71, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8726020

ABSTRACT

Polyhexylcyanoacrylate nanoparticles loaded with either the human immunodeficiency virus (HIV) protease inhibitor saquinavir (Ro 31-8959) or the nucleoside analog zalcitabine (2',3'-dideoxycytidine) were prepared by emulsion polymerization and tested for antiviral activity in primary human monocytes/macrophages in vitro. Both nanoparticulate formulations led to a dose-dependent reduction of HIV type 1 antigen production. While nanoparticle-bound zalcitabine showed no superiority to an aqueous solution of the drug, a significantly higher efficacy was observed with saquinavir-loaded nanoparticles. In acutely infected cells, an aqueous solution of saquinavir showed little antiviral activity at concentrations below 10 nM, whereas the nanoparticulate formulation exhibited a good antiviral effect at a concentration of 1 nM and a still-significant antigen reduction at 0.1 nM (50% inhibitory concentrations = 4.23 nM for the free drug and 0.39 nM for the nanoparticle-bound drug). At a concentration of 100 nM, saquinavir was completely inactive in chronically HIV-infected macrophages, but when bound to nanoparticles it caused a 35% decrease in antigen production. Using nanoparticles as a drug carrier system could improve the delivery of antiviral agents to the mononuclear phagocyte system in vivo, overcoming pharmacokinetic problems and enhancing the activities of drugs for the treatment of HIV infection and AIDS.


Subject(s)
Antiviral Agents/administration & dosage , HIV Protease Inhibitors/administration & dosage , HIV-1/drug effects , Macrophages/virology , Monocytes/virology , Saquinavir/administration & dosage , Zalcitabine/administration & dosage , Cells, Cultured , Cyanoacrylates , Drug Carriers , HIV Antigens/biosynthesis , Humans , Macrophages/drug effects , Monocytes/drug effects , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL