Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Opt Lett ; 48(24): 6524, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099789

ABSTRACT

We present an erratum to our Letter [Opt. Lett.46, 5906 (2021)10.1364/OL.442519]. This erratum corrects the caption of Fig. 2, which contains confusing information. This correction does not affect any of the results or the conclusions of the original Letter.

2.
Phys Rev Lett ; 131(16): 162501, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925694

ABSTRACT

Neutrinoless double beta decay (0νßß) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νßß) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νßß decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18} yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νßß decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νßß decay.

3.
Phys Rev Lett ; 128(17): 174802, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570451

ABSTRACT

Relativistic interactions between ultraintense (>10^{18} W cm^{-2}) laser pulses and magnetized underdense plasmas are known to produce few-cycle Cerenkov wake radiation in the terahertz (THz) domain. Using multidimensional particle-in-cell simulations, we demonstrate the possibility of generating high-field (>100 GV m^{-1}) THz bursts from helium gas plasmas embedded in strong (>100 T) magnetic fields perpendicular to the laser path. We show that two criteria must be satisfied for efficient THz generation. First, the plasma density should be adjusted to the laser pulse duration for a strong resonant excitation of the electromagnetic plasma wake. Second, in order to mitigate the damping of the transverse wake component across the density gradients at the plasma exit, the ratio of the relativistic electron cyclotron and plasma frequencies must be chosen slightly above unity, but not too large, lest the wake be degraded. Such conditions lead the outgoing THz wave to surpass in amplitude the electrostatic wakefield induced in a similar, yet unmagnetized plasma.

4.
Phys Rev Lett ; 126(18): 181802, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018798

ABSTRACT

The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νßß experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νßß decay in ^{100}Mo. With more than one year of operation (^{100}Mo exposure of 1.17 kg×yr for physics data), no event in the region of interest and, hence, no evidence for 0νßß is observed. We report a new limit on the half-life of 0νßß decay in ^{100}Mo of T_{1/2}>1.5×10^{24} yr at 90% C.I. The limit corresponds to an effective Majorana neutrino mass ⟨m_{ßß}⟩<(0.31-0.54) eV, dependent on the nuclear matrix element in the light Majorana neutrino exchange interpretation.

5.
Phys Rev Lett ; 125(14): 141301, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064531

ABSTRACT

We present the first Ge-based constraints on sub-MeV/c^{2} dark matter (DM) particles interacting with electrons using a 33.4 g Ge cryogenic detector with a 0.53 electron-hole pair (rms) resolution, operated underground at the Laboratoire Souterrain de Modane. Competitive constraints are set on the DM-electron scattering cross section, as well as on the kinetic mixing parameter of dark photons down to 1 eV/c^{2}. In particular, the most stringent limits are set for dark photon DM in the 6 to 9 eV/c^{2} range. These results demonstrate the high relevance of Ge cryogenic detectors for the search of DM-induced eV-scale electron signals.

6.
Opt Lett ; 44(6): 1488-1491, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874683

ABSTRACT

We address the long-standing problem of anomalous growth observed in the terahertz (THz) energy yield from air plasmas created by two-color laser pulses, as the fundamental wavelength λ0 is increased. Using two distinct optical parametric amplifiers (OPAs), we report THz energies scaling like λ0α with large exponents 5.6≤α≤14.3, which departs from the growth in λ02 expected from photocurrent theory. By means of comprehensive 3D simulations, we demonstrate that the changes in the laser beam size, pulse duration, and phase-matching conditions in the second-harmonic generation process when tuning the OPA's carrier wavelength can lead to these high scaling powers. The value of the phase angle between the two colors reached at the exit of the doubling crystal turns out to be crucial and even explains non-monotonic behaviors in the measurements.

7.
Phys Rev Lett ; 123(26): 264801, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951438

ABSTRACT

Terahertz pulse generation by ultraintense two-color laser fields ionizing gases with near- to far-infrared carrier wavelength is studied from particle-in-cell simulations. For a long pump wavelength (10.6 µm) promoting a large ratio of electron density over critical, photoionization is shown to catastrophically enhance the plasma wakefield, causing a net downshift in the optical spectrum and exciting THz fields with tens of GV/m amplitude in the laser direction. This emission is accompanied by coherent transition radiation (CTR) of comparable amplitude due to wakefield-driven electron acceleration. We analytically evaluate the fraction of CTR energy up to 30% of the total radiated emission including the particle self-field and numerically calibrate the efficiency of the matched blowout regime for electron densities varied over three orders of magnitude.

8.
Phys Rev Lett ; 120(14): 144801, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29694108

ABSTRACT

Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>10^{19} W/cm^{2}) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV/m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

9.
Opt Express ; 25(5): 4720-4740, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380743

ABSTRACT

We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.

10.
Phys Rev Lett ; 116(6): 063902, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26918992

ABSTRACT

We have solved the long-standing problem of the mechanism of terahertz (THz) generation by a two-color filament in air and found that both neutrals and plasma contribute to the radiation. We reveal that the contribution from neutrals by four-wave mixing is much weaker and higher in frequency than the distinctive plasma lower-frequency contribution. The former is in the forward direction while the latter is in a cone and reveals an abrupt down-shift to the plasma frequency. Ring-shaped spatial distributions of the THz radiation are shown to be of universal nature and they occur in both collimated and focusing propagation geometries. Experimental measurements of the frequency-angular spectrum generated by 130-fs laser pulses agree with numerical simulations based on a unidirectional pulse propagation model.

11.
Phys Rev Lett ; 114(18): 183901, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26001002

ABSTRACT

Broadband ultrashort terahertz (THz) pulses can be produced using plasma generation in a noble gas ionized by femtosecond two-color pulses. Here we demonstrate that, by using multiple-frequency laser pulses, one can obtain a waveform which optimizes the free electron trajectories in such a way that they acquire the largest drift velocity. This allows us to increase the THz conversion efficiency to 2%, an unprecedented performance for THz generation in gases. In addition to the analytical study of THz generation using a local current model, we perform comprehensive 3D simulations accounting for propagation effects which confirm this prediction. Our results show that THz conversion via tunnel ionization can be greatly improved with well-designed multicolor pulses.

12.
Opt Express ; 22(11): 13691-709, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921563

ABSTRACT

We develop a one-dimensional model of THz emissions induced by laser-driven, time-asymmetric ionization and current oscillations in a hydrogen gas. Our model highlights complex scalings of the THz fields with respect to the laser and gas parameters, in particular, a non-monotonic behavior against the laser parameters. Analytical expressions of the transmitted and reflected fields are presented, explaining the THz spectra observed in particle-in-cell and forward-pulse propagation codes. The backward-propagating THz wave is mainly driven by the electron current oscillations at the plasma frequency, and its resulting spectrum operates below the plasma frequency. The transmitted THz wave is emitted from both plasma current oscillations and photo-ionization. Their respective signal presents a contribution below and around the plasma frequency, plus a contribution at higher frequencies associated to the photo-induced current. The interplay between these two mechanisms relies on the ratio between the propagation length and the plasma skin depth.

13.
Phys Rev E ; 108(6-2): 065211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243518

ABSTRACT

Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum. After showing that both mechanisms tend to largely compensate each other when all the electrons are pulled back into the target, we investigate the scaling of the net radiation with the sheath field strength. We then demonstrate the sensitivity of this radiation to a percent-level fraction of escaping electrons. We also study the influence of the target thickness and laser focusing. The same sheath field that confines most of the fast electrons around the target rapidly sets into motion the surface ions. We describe the THz emission from these accelerated ions and their accompanying hot electrons by means of a plasma expansion model that allows for finite foil size and multidimensional effects. Again, we explore the dependencies of this radiation mechanism on the laser-target parameters. Under conditions typical of current ultrashort laser-solid experiments, we find that the THz radiation from the expanding plasma is much less energetic-by one to three orders of magnitude-than that due to the early-time motion of the fast electrons.

14.
Diabet Med ; 29(4): 509-14, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22133020

ABSTRACT

AIMS: Previous studies report an increased risk of depression in patients with diabetes, but there is little knowledge about if or how the risk varies according to sex, groups of age and different type of treatments for the diabetes. We therefore aimed to investigate the risk of depression in different types of treatment for diabetes and in subgroups of age and sex. METHODS: Data on the Norwegian population from 20 years of age being prescribed antidepressants (n = 253 668) and anti-diabetic agents (n = 121 392) in 2006 was obtained from the National Register of Prescriptions and analysed in a cross-sectional design. RESULTS: Individuals using insulin in monotherapy (n = 29 611) had an age- and sex-adjusted odds ratio of 1.47 (95% CI 1.42-1.53) for receiving antidepressants. Corresponding odds ratios for individuals receiving oral anti-diabetic agents in monotherapy (n = 76 387) and for those who received both insulin and oral anti-diabetic agents (n = 15 394) were 1.44 (95% CI 1.41-1.47) and 1.82 (95% CI 1.80-1.97), respectively. No major differences in risk according to age were found for persons receiving insulin in monotherapy, while a marked and inverse association between age and risk of receiving antidepressants was found for those receiving oral anti-diabetic agents. Highest risk of antidepressant treatment [odds ratio 4.15 (95% CI 3.12-5.52)] was found for patients receiving both oral anti-diabetic agents and insulin at 30-39 years. The risk was equally increased among men and women. CONCLUSIONS: The risk of depression among patients with diabetes varies strongly according to age and type of treatment for diabetes.


Subject(s)
Antidepressive Agents/administration & dosage , Depression/epidemiology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Adult , Age Factors , Aged , Aged, 80 and over , Cross-Sectional Studies , Depression/drug therapy , Diabetes Mellitus, Type 1/psychology , Diabetes Mellitus, Type 2/psychology , Female , Humans , Insulin/administration & dosage , Insulin/adverse effects , Male , Middle Aged , Norway/epidemiology , Risk Factors , Sex Factors , Young Adult
15.
Neuropediatrics ; 43(6): 332-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23065766

ABSTRACT

AIM: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is known as a relatively mild leukoencephalopathy. We investigated the occurrence of severe variants of LBSL with extensive brain magnetic resonance imaging (MRI) abnormalities. METHOD: MRIs of approximately 3,000 patients with an unknown leukoencephalopathy were retrospectively reviewed for extensive signal abnormalities of the cerebral and cerebellar white matter, posterior limb of the internal capsule, cerebellar peduncles, pyramids, and medial lemniscus. Clinical data were retrospectively collected. RESULTS: Eleven patients fulfilled the MRI criteria (six males); six had DARS2 mutations. Clinical and laboratory findings did not distinguish between patients with and without DARS2 mutations, but MRI did. Patients with DARS2 mutations more often had involvement of structures typically affected in LBSL, including decussatio of the medial lemniscus, anterior spinocerebellar tracts, and superior and inferior cerebellar peduncles. Also, involvement of the globus pallidus was associated with DARS2 mutations. Earliest disease onset was neonatal; earliest death at 20 months. INTERPRETATION: This study confirms the occurrence of early infantile, severe LBSL, extending the known phenotypic range of LBSL. Abnormality of specific brainstem tracts and cerebellar peduncles are MRI findings that point to the correct diagnosis.


Subject(s)
Brain/pathology , Leukoencephalopathies/pathology , Mitochondrial Diseases/pathology , Nerve Fibers, Myelinated/pathology , Aspartate-tRNA Ligase/deficiency , Aspartate-tRNA Ligase/genetics , Child , Child, Preschool , Female , Humans , Infant , Leukoencephalopathies/genetics , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/genetics , Mutation , Retrospective Studies , Severity of Illness Index , Spinal Cord/pathology
16.
Rev Sci Instrum ; 93(3): 033004, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35365014

ABSTRACT

We present a terahertz (THz) platform employing air plasma produced by an ultrashort two-color laser pulse as a broadband THz source and air biased coherent detection (ABCD) of the THz field. In contrast to previous studies, a simple peak detector connected to a micro-controller board acquires the ABCD-signal coming from the avalanche photodiode. Numerical simulations of the whole setup yield temporal and spectral profiles of the terahertz electric field in both source and detection area. The latter ones are in excellent agreement with our measurements, confirming THz electric fields with peak amplitude in the MV/cm range. We further illustrate the capabilities of the platform by performing THz spectroscopy of water vapor and a polystyrene reference sample.

17.
Opt Lett ; 36(16): 3166-8, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21847195

ABSTRACT

Forward and backward terahertz emission by ionizing two-color laser pulses in gas is investigated by means of a simple semianalytical model based on Jefimenko's equations and rigorous Maxwell simulations in one and two dimensions. We find the emission in the backward direction has a much smaller spectral bandwidth than in the forward direction and explain this by interference effects. Forward terahertz radiation is generated predominantly at the ionization front and is thus almost not affected by the opacity of the plasma, in excellent agreement with results obtained from a unidirectional pulse propagation model.


Subject(s)
Light , Plasma Gases , Spectrum Analysis , Terahertz Radiation , Time Factors
18.
Nat Commun ; 12(1): 6733, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795223

ABSTRACT

Beyond a critical disorder, two-dimensional (2D) superconductors become insulating. In this Superconductor-Insulator Transition (SIT), the nature of the insulator is still controversial. Here, we present an extensive experimental study on insulating NbxSi1-x close to the SIT, as well as corresponding numerical simulations of the electrical conductivity. At low temperatures, we show that electronic transport is activated and dominated by charging energies. The sample thickness variation results in a large spread of activation temperatures, fine-tuned via disorder. We show numerically and experimentally that this originates from the localization length varying exponentially with thickness. At the lowest temperatures, there is an increase in activation energy related to the temperature at which this overactivated regime is observed. This relation, observed in many 2D systems shows that conduction is dominated by single charges that have to overcome the gap when entering superconducting grains.

19.
Phys Rev Lett ; 105(5): 053903, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20867920

ABSTRACT

We present a combined theoretical and experimental study of spatiotemporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatiotemporal reshaping and of a plasma-induced blueshift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036406, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18517532

ABSTRACT

Three-dimensional numerical simulations and direct experimental measurements of the multifilamentation of femtosecond laser pulses propagating in air are quantitatively compared. Agreement is obtained in terms of the evolution of the filamentation pattern and in terms of the size and energy of the individual filaments through 12 m of propagation. These results are made possible by the combination of a massively parallel propagation code along with a nondestructive experimental diagnostic technique. Influence of the pulse duration is moreover addressed. The numerical calculations also show that single and multiple filaments exhibit almost identical spectral signature.

SELECTION OF CITATIONS
SEARCH DETAIL