Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38895980

ABSTRACT

Elevated skeletal muscle diacylglycerols (DAG) and ceramides can impair insulin signaling, and acylcarnitines (acylCN) reflect impaired fatty acid oxidation, thus the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipids in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). It is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts, thus contributing to or exacerbating insulin resistance. We investigated the impact of acute hyperinsulinemia on the muscle lipidome in order to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. Endurance athletes (n=12), sedentary lean adults (n=12), and individuals with obesity (n=13) and T2D (n=7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. While there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D. C18 1,2-DAGs increased during the clamp with T2D only, which negatively correlated with insulin sensitivity. Basal muscle C18:0 ceramides were elevated with T2D, but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared to only 46% with T2D. Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.

2.
Diabetologia ; 66(5): 873-883, 2023 05.
Article in English | MEDLINE | ID: mdl-36790478

ABSTRACT

AIMS/HYPOTHESIS: Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction of diabetes risk and intervention response. METHODS: Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clustering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a longitudinal intervention study. RESULTS: We found that genes with a strong association with clinical measures clustered into three distinct expression patterns. Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables, indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes risk and intervention response. CONCLUSION/INTERPRETATION: Our results confirm that disease progression and successful intervention depend on individual gene expression states. We anticipate that our findings may lead to a better understanding and prediction of individual diabetes risk and may help to develop individualised intervention strategies.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Prognosis , Cross-Sectional Studies , Muscle, Skeletal/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Glucose/metabolism , Biomarkers/metabolism , Gene Expression Profiling
3.
J Lipid Res ; 63(10): 100270, 2022 10.
Article in English | MEDLINE | ID: mdl-36030929

ABSTRACT

Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/physiology , Ceramides , Sphingolipids , Obesity , Triglycerides
4.
Diabetologia ; 64(1): 168-180, 2021 01.
Article in English | MEDLINE | ID: mdl-33128577

ABSTRACT

AIMS/HYPOTHESIS: Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS: We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS: Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION: These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.


Subject(s)
Insulin Resistance/physiology , Muscle, Skeletal/chemistry , Muscle, Skeletal/ultrastructure , Triglycerides/analysis , Triglycerides/chemistry , Adult , Athletes , Cell Nucleus/chemistry , Cytosol/chemistry , Diabetes Mellitus, Type 2/metabolism , Dietary Fats/administration & dosage , Diglycerides/analysis , Endoplasmic Reticulum/chemistry , Female , Humans , Male , Middle Aged , Mitochondria, Muscle/chemistry , Obesity/metabolism , Physical Endurance , Sarcolemma/chemistry
5.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352903

ABSTRACT

Lipid catabolism represents an Achilles heel in prostate cancer (PCa) that can be exploited for therapy. CPT1A regulates the entry of fatty acids into the mitochondria for beta-oxidation and its inhibition has been shown to decrease PCa growth. In this study, we examined the pharmacological blockade of lipid oxidation with ranolazine in TRAMPC1 PCa models. Oral administration of ranolazine (100 mg/Kg for 21 days) resulted in decreased tumor CD8+ T-cells Tim3 content, increased macrophages, and decreased blood myeloid immunosuppressive monocytes. Using multispectral staining, drug treatments increased infiltration of CD8+ T-cells and dendritic cells compared to vehicle. Functional studies with spleen cells of drug-treated tumors co-cultured with TRAMPC1 cells showed increased ex vivo T-cell cytotoxic activity, suggesting an anti-tumoral response. Lastly, a decrease in CD4+ and CD8+ T-cells expressing PD1 was observed when exhausted spleen cells were incubated with TRAMPC1 Cpt1a-KD compared to the control cells. These data indicated that genetically blocking the ability of the tumor cells to oxidize lipid can change the activation status of the neighboring T-cells. This study provides new knowledge of the role of lipid catabolism in the intercommunication of tumor and immune cells, which can be extrapolated to other cancers with high CPT1A expression.


Subject(s)
Adipose Tissue/metabolism , Immunity , Oxidation-Reduction , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Adipose Tissue/drug effects , Animals , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytotoxicity, Immunologic/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lipid Metabolism/drug effects , Male , Mice , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/etiology , Ranolazine/pharmacology , Tumor Burden
6.
Am J Physiol Endocrinol Metab ; 316(5): E707-E718, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30753112

ABSTRACT

Polycystic ovarian syndrome (PCOS) is associated with insulin resistance (IR) and altered muscle mitochondrial oxidative phosphorylation. IR in adults with obesity and diabetes is associated with changes in amino acid, free fatty acid (FFA), and mitochondrial acylcarnitine (AC) metabolism. We sought to determine whether these metabolites are associated with IR and/or androgens in youth-onset PCOS. We enrolled obese girls with PCOS [ n = 15, 14.5 yr (SD 1.6), %BMI 98.5 (SD 1.0)] and without PCOS [ n = 6, 13.2 yr (SD 1.2), %BMI 98.0 (SD 1.1)]. Insulin sensitivity was assessed by hyperinsulinemic euglycemic clamp. Untargeted metabolomics of plasma was performed while fasting and during hyperinsulinemia. Fasting arginine, glutamine, histidine, lysine, phenylalanine, and tyrosine were higher ( P < 0.04 for all but P < 0.001 for valine), as were glutamine and histidine during hyperinsulinemia ( P < 0.03). Higher valine during hyperinsulinemia was associated with IR ( r = 0.59, P = 0.006). Surprisingly, end-clamp AC C4 was lower in PCOS, and lower C4 was associated with IR ( r = -0.44, P = 0.04). End-clamp FFAs of C14:0, C16:1, and C18:1 were higher in PCOS girls, and C16:1 and C18:1 strongly associated with IR ( r = 0.73 and 0.53, P < 0.01). Free androgen index related negatively to short-, medium-, and long-chain AC ( r = -0.41 to -0.71, P < 0.01) but not FFA or amino acids. Obese girls with PCOS have a distinct metabolic signature during fasting and hyperinsulinemia. As in diabetes, IR related to valine and FFAs, with an unexpected relationship with AC C4, suggesting unique metabolism in obese girls with PCOS.


Subject(s)
Amino Acids/metabolism , Fasting/metabolism , Fatty Acids/metabolism , Hyperinsulinism/metabolism , Obesity/metabolism , Polycystic Ovary Syndrome/metabolism , Absorptiometry, Photon , Adipose Tissue/metabolism , Adolescent , Blood Glucose/metabolism , Body Composition , Calorimetry, Indirect , Carnitine/analogs & derivatives , Carnitine/metabolism , Case-Control Studies , Child , Estradiol/metabolism , Female , Glucose Clamp Technique , Humans , Insulin Resistance , Liver/metabolism , Metabolome , Metabolomics , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Sedentary Behavior , Sex Hormone-Binding Globulin/metabolism , Testosterone/metabolism
7.
Am J Physiol Endocrinol Metab ; 316(2): E186-E195, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30562061

ABSTRACT

Adolescents with type 2 diabetes (T2D) have severe insulin resistance (IR) secondary to obesity, genetics, and puberty, and IR predicts metabolic comorbidities. Adults with T2D have multitissue IR, which has guided therapeutic developments, but this is not established in youth. We sought to assess adipose, hepatic, and peripheral insulin sensitivity in adolescents with and without T2D. Twenty-seven youth with T2D [age: 15.6 ± 0.4 yr; female: 78%; body mass index (BMI) percentile: 96.1 (52.6, 95.9), late puberty; hemoglobin A1c (HbA1c) 7.3% (6.2, 10.1)] and 21 controls of similar BMI, pubertal stage, and habitual activity were enrolled. Insulin action was measured with a four-phase hyperinsulinemic-euglycemic clamp (basal, 10, 16, and 80 mU·m-2·min-1 for studying adipose, hepatic, and peripheral IR, respectively) with glucose and glycerol isotope tracers. Total fat mass, fat-free mass, liver fat fraction, and visceral fat were measured with dual-energy x-ray absorptiometry (DXA) and MRI, respectively. Free fatty acids (FFAs), lipid profile, and inflammatory markers were also measured. Adolescents with T2D had higher lipolysis ( P = 0.012), endogenous glucose production ( P < 0.0001), and lower glucose clearance ( P = 0.002) during hyperinsulinemia than controls. In T2D, peripheral IR positively correlated to FFA ( P < 0.001), inflammatory markers, visceral ( P = 0.004) and hepatic fat ( P = 0.007); hepatic IR correlated with central obesity ( P = 0.004) and adipose IR ( P = 0.003). Youth with T2D have profound multitissue IR compared with BMI-equivalent youth without T2D. The development of multitissue interactions appears crucial to the pathogenesis of T2D. Therapeutic targets on multitissue IR may be of benefit, deserving of further research.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Liver/metabolism , Obesity, Abdominal/metabolism , Absorptiometry, Photon , Adolescent , Body Composition , Body Mass Index , Fatty Acids, Nonesterified/metabolism , Female , Glucose Clamp Technique , Humans , Intra-Abdominal Fat/diagnostic imaging , Magnetic Resonance Imaging , Male , Obesity, Abdominal/diagnostic imaging
8.
Am J Physiol Endocrinol Metab ; 316(5): E866-E879, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30620635

ABSTRACT

Intermuscular adipose tissue (IMAT) is negatively related to insulin sensitivity, but a causal role of IMAT in the development of insulin resistance is unknown. IMAT was sampled in humans to test for the ability to induce insulin resistance in vitro and characterize gene expression to uncover how IMAT may promote skeletal muscle insulin resistance. Human primary muscle cells were incubated with conditioned media from IMAT, visceral (VAT), or subcutaneous adipose tissue (SAT) to evaluate changes in insulin sensitivity. RNAseq analysis was performed on IMAT with gene expression compared with skeletal muscle and SAT, and relationships to insulin sensitivity were determined in men and women spanning a wide range of insulin sensitivity measured by hyperinsulinemic-euglycemic clamp. Conditioned media from IMAT and VAT decreased insulin sensitivity similarly compared with SAT. Multidimensional scaling analysis revealed distinct gene expression patterns in IMAT compared with SAT and muscle. Pathway analysis revealed that IMAT expression of genes in insulin signaling, oxidative phosphorylation, and peroxisomal metabolism related positively to donor insulin sensitivity, whereas expression of macrophage markers, inflammatory cytokines, and secreted extracellular matrix proteins were negatively related to insulin sensitivity. Perilipin 5 gene expression suggested greater IMAT lipolysis in insulin-resistant individuals. Combined, these data show that factors secreted from IMAT modulate muscle insulin sensitivity, possibly via secretion of inflammatory cytokines and extracellular matrix proteins, and by increasing local FFA concentration in humans. These data suggest IMAT may be an important regulator of skeletal muscle insulin sensitivity and could be a novel therapeutic target for skeletal muscle insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Adult , Athletes , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Glucose Clamp Technique , Humans , Intra-Abdominal Fat/metabolism , Male , Middle Aged , Obesity/metabolism , Primary Cell Culture , Sedentary Behavior , Sequence Analysis, RNA , Subcutaneous Fat/metabolism
9.
Am J Physiol Endocrinol Metab ; 314(2): E152-E164, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28978544

ABSTRACT

Intramuscular triglyceride (IMTG) concentration is elevated in insulin-resistant individuals and was once thought to promote insulin resistance. However, endurance-trained athletes have equivalent concentration of IMTG compared with individuals with type 2 diabetes, and have very low risk of diabetes, termed the "athlete's paradox." We now know that IMTG synthesis is positively related to insulin sensitivity, but the exact mechanisms for this are unclear. To understand the relationship between IMTG synthesis and insulin sensitivity, we measured IMTG synthesis in obese control subjects, endurance-trained athletes, and individuals with type 2 diabetes during rest, exercise, and recovery. IMTG synthesis rates were positively related to insulin sensitivity, cytosolic accumulation of DAG, and decreased accumulation of C18:0 ceramide and glucosylceramide. Greater rates of IMTG synthesis in athletes were not explained by alterations in FFA concentration, DGAT1 mRNA expression, or protein content. IMTG synthesis during exercise in Ob and T2D indicate utilization as a fuel despite unchanged content, whereas IMTG concentration decreased during exercise in athletes. mRNA expression for genes involved in lipid desaturation and IMTG synthesis were increased after exercise and recovery. Further, in a subset of individuals, exercise decreased cytosolic and membrane di-saturated DAG content, which may help explain insulin sensitization after acute exercise. These data suggest IMTG synthesis rates may influence insulin sensitivity by altering intracellular lipid localization, and decreasing specific ceramide species that promote insulin resistance.


Subject(s)
Exercise/physiology , Lipogenesis/physiology , Muscle, Skeletal/metabolism , Triglycerides/metabolism , Adult , Athletes , Biological Transport , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Female , Humans , Insulin Resistance/physiology , Lipid Metabolism/physiology , Male , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Physical Endurance/physiology , Rest
10.
Diabetologia ; 59(4): 785-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26739815

ABSTRACT

AIMS/HYPOTHESES: Ceramides and other sphingolipids comprise a family of lipid molecules that accumulate in skeletal muscle and promote insulin resistance. Chronic endurance exercise training decreases muscle ceramides and other sphingolipids, but less is known about the effects of a single bout of exercise. METHODS: We measured basal relationships and the effect of acute exercise (1.5 h at 50% [Formula: see text]) and recovery on muscle sphingolipid content in obese volunteers, endurance trained athletes and individuals with type 2 diabetes. RESULTS: Muscle C18:0 ceramide (p = 0.029), dihydroceramide (p = 0.06) and glucosylceramide (p = 0.03) species were inversely related to insulin sensitivity without differences in total ceramide, dihydroceramide, and glucosylceramide concentration. Muscle C18:0 dihydroceramide correlated with markers of muscle inflammation (p = 0.04). Transcription of genes encoding sphingolipid synthesis enzymes was higher in athletes, suggesting an increased capacity for sphingolipid synthesis. The total concentration of muscle ceramides and sphingolipids increased during exercise and then decreased after recovery, during which time ceramide levels reduced to significantly below basal levels. CONCLUSIONS/INTERPRETATION: These data suggest ceramide and other sphingolipids containing stearate (18:0) are uniquely related to insulin resistance in skeletal muscle. Recovery from an exercise bout decreased muscle ceramide concentration; this may represent a mechanism promoting the insulin-sensitising effects of acute exercise.


Subject(s)
Exercise/physiology , Muscle, Skeletal/metabolism , Rest/physiology , Sphingolipids/metabolism , Adult , Blotting, Western , Ceramides/metabolism , Humans , Insulin Resistance/physiology
11.
Am J Physiol Endocrinol Metab ; 310(5): E323-31, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26714848

ABSTRACT

Advancing diabetes care requires accurate physiological assessments. Hyperinsulinemic clamps with stable isotope tracers can simultaneously measure insulin's ability to suppress lipolysis and hepatic glucose release. Traditionally, these methods require an assessment of basal glucose and glycerol rate of appearance (Ra). Basal Ra is challenging to measure in insulin-dependent diabetes, where exogenous insulin required to maintain normoglycemia can raise peripheral insulin concentrations sufficiently to suppress basal Ra. Thus we identified two alternative statistical approaches to describe changes in glucose and glycerol Ra that are less reliant on basal assessments. Sixteen youths (4 type 1 diabetic, 4 type 2 diabetic, 4 lean controls, and 4 obese nondiabetic) underwent a four-phase ("basal" and 10, 16, and 80 mU·m(2)·min(-1)) hyperinsulinemic euglycemic clamp with glucose and glycerol tracers. Glucose and glycerol Ra were calculated per phase. A statistical method, the standard two-stage (STS) algorithm, was applied to the individual log insulin vs. Ra curves to calculate a single predicted Ra value. A population-based mixed-effects model (MEM) compared the group average Ra with log insulin curves and described individual deviations from group means and was used to calculate individual predicted Ra. Both models were applied to the participant data, and predicted Ras at the mean insulin concentration per phase (10 for glycerol, 16 for glucose) were calculated, with good agreement between observed and predicted values. In our data set, the MEM was better able to detect group differences. Both STS and MEM can model lipolysis and endogenous glucose release in insulin-dependent states when basal Ra cannot be accurately measured.


Subject(s)
Algorithms , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycerol/metabolism , Insulin/metabolism , Obesity/metabolism , Adolescent , Case-Control Studies , Child , Deuterium , Female , Glucose/metabolism , Glucose Clamp Technique , Humans , Lipolysis , Male , Models, Theoretical
12.
Am J Physiol Endocrinol Metab ; 309(4): E398-408, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26126684

ABSTRACT

Ceramides and sphingolipids are a family of lipid molecules that circulate in serum and accumulate in skeletal muscle, promoting insulin resistance. Plasma ceramide and dihydroceramide are related to insulin resistance, yet less is known regarding other ceramide and sphingolipid species. Despite its association with insulin sensitivity, chronic endurance exercise training does not change plasma ceramide and sphingolipid content, with little known regarding a single bout of exercise. We measured basal relationships and the effect of acute exercise (1.5 h at 50% V̇o2 max) and recovery on serum ceramide and sphingolipid content in sedentary obese individuals, endurance-trained athletes, and individuals with type 2 diabetes (T2D). Basal serum C18:0, C20:0, and C24:1 ceramide and C18:0 and total dihydroceramide were significantly higher in T2D and, along with C16:0 ceramide and C18:0 sphingomyelin, correlated positively with insulin resistance. Acute exercise significantly increased serum ceramide, glucosylceramide, and GM3 gangliosides, which largely decreased to basal values in recovery. Sphingosine 1-phosphate and sphingomyelin did not change during exercise but decreased below basal values in recovery. Serum C16:0 and C18:0 ceramide and C18:0 sphingomyelin, but not the total concentrations of either of them, were positively correlated with markers of muscle NF-κB activation, suggesting that specific species activate intracellular inflammation. Interestingly, a subset of sphingomyelin species, notably C14:0, C22:3, and C24:4 species, was positively associated with insulin secretion and glucose tolerance. Together, these data show that unique ceramide and sphingolipid species associate with either protective or deleterious features for diabetes and could provide novel therapeutic targets for the future.


Subject(s)
Exercise/physiology , Insulin Resistance/physiology , Sphingolipids/blood , Adult , Athletes , Blood Glucose/metabolism , Ceramides/blood , Ceramides/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Exercise Test , Female , Humans , Male , Obesity/blood , Obesity/metabolism , Physical Endurance/physiology , Recovery of Function/physiology , Sedentary Behavior
13.
Nat Metab ; 6(5): 963-979, 2024 May.
Article in English | MEDLINE | ID: mdl-38693320

ABSTRACT

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.


Subject(s)
Adipose Tissue, White , Physical Conditioning, Animal , Sex Characteristics , Subcutaneous Fat , Animals , Male , Female , Rats , Adipose Tissue, White/metabolism , Subcutaneous Fat/metabolism , Adipogenesis , Rats, Sprague-Dawley , Multiomics
14.
Article in English | MEDLINE | ID: mdl-38634503

ABSTRACT

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. While there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multi-center study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a pre-clinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 weeks of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 weeks. The adult component also includes recruitment of highly active endurance trained or resistance trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.

15.
Am J Physiol Heart Circ Physiol ; 304(6): H861-73, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23335793

ABSTRACT

Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.


Subject(s)
Metabolic Syndrome/physiopathology , Myocardial Contraction , Myocardial Reperfusion Injury/physiopathology , Acyl Coenzyme A/metabolism , Animals , Blood Glucose , Cardiolipins/metabolism , Cholesterol/metabolism , Diet , Dietary Fats/adverse effects , Dietary Fats/metabolism , Disease Models, Animal , Glucose/metabolism , Heart Function Tests , Insulin/blood , MAP Kinase Signaling System , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Myocardial Reperfusion Injury/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Swine , Swine, Miniature
16.
Nat Rev Endocrinol ; 19(5): 285-298, 2023 05.
Article in English | MEDLINE | ID: mdl-36564490

ABSTRACT

Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.


Subject(s)
Diabetes Mellitus, Type 2 , Male , Humans , Female , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Obesity/metabolism , Adiposity
17.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37607030

ABSTRACT

Stimulation of adipocyte ß-adrenergic receptors (ß-ARs) induces expression of uncoupling protein 1 (UCP1), promoting nonshivering thermogenesis. Association of ß-ARs with a lysine-myristoylated form of A kinase-anchoring protein 12 (AKAP12, also known as gravin-α) is required for downstream signaling that culminates in UCP1 induction. Conversely, demyristoylation of gravin-α by histone deacetylase 11 (HDAC11) suppresses this pathway. Whether inhibition of HDAC11 in adipocytes is sufficient to drive UCP1 expression independently of ß-ARs is not known. Here, we demonstrate that adipocyte-specific deletion of HDAC11 in mice leads to robust induction of UCP1 in adipose tissue (AT), resulting in increased body temperature. These effects are mimicked by treating mice in vivo or human AT ex vivo with an HDAC11-selective inhibitor, FT895. FT895 triggers biphasic, gravin-α myristoylation-dependent induction of UCP1 protein expression, with a noncanonical acute response that is posttranscriptional and independent of protein kinase A (PKA), and a delayed response requiring PKA activity and new Ucp1 mRNA synthesis. Remarkably, HDAC11 inhibition promotes UCP1 expression even in models of adipocyte catecholamine resistance where ß-AR signaling is blocked. These findings define cell-autonomous, multimodal roles for HDAC11 as a suppressor of thermogenesis, and highlight the potential of inhibiting HDAC11 to therapeutically alter AT phenotype independently of ß-AR stimulation.


Subject(s)
Adipocytes , Catecholamines , Histone Deacetylase Inhibitors , Histone Deacetylases , Animals , Humans , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Catecholamines/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Histone Deacetylase Inhibitors/pharmacology
18.
Diabetes ; 72(7): 884-897, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37186949

ABSTRACT

Sphingolipids are thought to promote skeletal muscle insulin resistance. Deoxysphingolipids (dSLs) are atypical sphingolipids that are increased in the plasma of individuals with type 2 diabetes and cause ß-cell dysfunction in vitro. However, their role in human skeletal muscle is unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared with athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMPK phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSLs as therapeutic targets for the treatment and prevention of type 2 diabetes. ARTICLE HIGHLIGHTS: Deoxysphingolipids (dSLs) are atypical sphingolipids elevated in the plasma of individuals with type 2 diabetes, and their role in muscle insulin resistance has not been investigated. We evaluated dSL in vivo in skeletal muscle from cross-sectional and longitudinal insulin-sensitizing intervention studies and in vitro in myotubes manipulated to synthesize higher dSLs. dSLs were increased in the muscle of people with insulin resistance, inversely correlated to insulin sensitivity, and significantly decreased after an insulin-sensitizing intervention; increased intracellular dSL concentrations cause myotubes to become more insulin resistant. Reduction of muscle dSL levels is a potential novel therapeutic target to prevent/treat skeletal muscle insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/physiology , Cross-Sectional Studies , Muscle, Skeletal , Sphingolipids , Muscle Fibers, Skeletal , Insulin , Obesity
19.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37034582

ABSTRACT

Stimulation of adipocyte ß-adrenergic receptors (ß-ARs) induces expression of uncoupling protein 1 (UCP1), promoting non-shivering thermogenesis. Association of ß-ARs with a lysine myristoylated form of A-kinase anchoring protein 12 (AKAP12)/gravin-α is required for downstream signaling that culminates in UCP1 induction. Conversely, demyristoylation of gravin-α by histone deacetylase 11 (HDAC11) suppresses this pathway. Whether inhibition of HDAC11 in adipocytes is sufficient to drive UCP1 expression independently of ß-ARs is not known. Here, we demonstrate that adipocyte-specific deletion of HDAC11 in mice leads to robust induction of UCP1 in adipose tissue (AT), resulting in increased body temperature. These effects are mimicked by treating mice in vivo or human AT ex vivo with an HDAC11-selective inhibitor, FT895. FT895 triggers biphasic, gravin-α myristoylation-dependent induction of UCP1 protein expression, with a non-canonical acute response that is post-transcriptional and independent of protein kinase A (PKA), and a delayed response requiring PKA activity and new Ucp1 mRNA synthesis. Remarkably, HDAC11 inhibition promotes UCP1 expression even in models of adipocyte catecholamine resistance where ß-AR signaling is blocked. These findings define cell autonomous, multi-modal roles for HDAC11 as a suppressor of thermogenesis, and highlight the potential of inhibiting HDAC11 to therapeutically alter AT phenotype independently of ß-AR stimulation.

20.
Diabetes ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37094369

ABSTRACT

Sphingolipids are thought to promote skeletal muscle insulin resistance. 1-Deoxysphingolipids (dSL) are atypical sphingolipids that are increased in plasma of individuals with type 2 diabetes and cause ß-cell dysfunction in vitro. However, their role in human skeletal muscle in unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared to athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMP-activated kinase (AMPK) phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSL as therapeutic targets for the treatment and prevention of type 2 diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL