Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neurobiol Dis ; 170: 105756, 2022 08.
Article in English | MEDLINE | ID: mdl-35584727

ABSTRACT

BACKGROUND: Few treatments exist for the cognitive symptoms of schizophrenia. Pharmacological agents resulting in glutamate N-methyl-d-aspartate (NMDA) receptor hypofunction, such as MK-801, mimic many of these symptoms and disrupt neural activity. Recent evidence suggests that deep brain stimulation (DBS) of the medial septal nucleus (MSN) can modulate medial prefrontal cortex (mPFC) and hippocampal activity and improve spatial memory. OBJECTIVE: Here, we examine the effects of acute MK-801 administration on oscillatory activity within the septohippocampal circuit and behavior. We also evaluate the potential for MSN stimulation to improve cognitive behavioral measures following MK-801 administration. METHODS: 59 Sprague Dawley male rats received either acute intraperitoneal (IP) saline vehicle injections or MK-801 (0.1 mg/kg). Theta (5-12 Hz), low gamma (30-50 Hz) and high frequency oscillatory (HFO) power were analyzed in the mPFC, MSN, thalamus and hippocampus. Rats underwent MSN theta (7.7 Hz), gamma (100 Hz) or no stimulation during behavioral tasks (Novel object recognition (NOR), elevated plus maze, Barnes maze (BM)). RESULTS: Injection of MK-801 resulted in frequency-specific changes in oscillatory activity, decreasing theta while increasing HFO power. Theta, but not gamma, stimulation enhanced the anxiolytic effects of MK-801 on the elevated plus maze. While MK-801 treated rats exhibited spatial memory deficits on the Barnes maze, those that also received MSN theta, but not gamma, stimulation found the escape hole sooner. CONCLUSIONS: These findings demonstrate that acute MK-801 administration leads to altered neural activity in the septohippocampal circuit and impaired spatial memory. Further, these findings suggest that MSN theta-frequency stimulation improves specific spatial memory deficits and may be a possible treatment for cognitive impairments caused by NMDA hypofunction.


Subject(s)
Deep Brain Stimulation , Septal Nuclei , Animals , Deep Brain Stimulation/methods , Dizocilpine Maleate/pharmacology , Hippocampus , Male , Memory Disorders/chemically induced , Memory Disorders/therapy , N-Methylaspartate/pharmacology , Rats , Rats, Sprague-Dawley , Spatial Memory
2.
Brain Sci ; 14(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539589

ABSTRACT

Eating disorders are a group of psychiatric conditions that involve pathological relationships between patients and food. The most prolific of these disorders are anorexia nervosa, bulimia nervosa, and binge eating disorder. The current standard of care involves psychotherapy, pharmacotherapy, and the management of comorbid conditions, with nutritional rehabilitation reserved for severe cases of anorexia nervosa. Unfortunately, many patients often fail to respond, leaving a concerning treatment gap between the current and requisite treatments for eating disorders. To better understand the neurobiology underlying these eating disorders, investigations have been undertaken to characterize the activity of various neural networks, primarily those activated during tasks of executive inhibition, reward processing, and self-reference. Various neuromodulatory techniques have been proposed to stimulate these networks with the goal of improving patients' BMI and mental health. The aim of this review is to compile a comprehensive summarization of the current literature regarding the underlying neural connectivity of anorexia nervosa, bulimia nervosa, and binge eating disorder as well as the numerous neuromodulatory modalities that have been investigated. Importantly, we aimed to summarize the most significant clinical trials to date as well as to provide an updated assessment of the role of deep brain stimulation, summarizing numerous recently published clinical studies that have greatly contributed to the literature. In this review, we found therapeutic evidence for transcranial magnetic stimulation and transcranial direct current stimulation in treating individuals suffering from anorexia nervosa, bulimia nervosa, and binge eating disorder. We also found significant evidence for the role of deep brain stimulation, particularly as an escalatory therapy option for the those who failed standard therapy. Finally, we hope to provide promising directions for future clinical investigations.

3.
Front Neurosci ; 18: 1389096, 2024.
Article in English | MEDLINE | ID: mdl-38966758

ABSTRACT

Introduction: Both ketamine (KET) and medial prefrontal cortex (mPFC) deep brain stimulation (DBS) are emerging therapies for treatment-resistant depression, yet our understanding of their electrophysiological mechanisms and biomarkers is incomplete. This study investigates aperiodic and periodic spectral parameters, and the signal complexity measure sample entropy, within mPFC local field potentials (LFP) in a chronic corticosterone (CORT) depression model after ketamine and/or mPFC DBS. Methods: Male rats were intraperitoneally administered CORT or vehicle for 21 days. Over the last 7 days, animals receiving CORT were treated with mPFC DBS, KET, both, or neither; then tested across an array of behavioral tasks for 9 days. Results: We found that the depression-like behavioral and weight effects of CORT correlated with a decrease in aperiodic-adjusted theta power (5-10 Hz) and an increase in sample entropy during the administration phase, and an increase in theta peak frequency and a decrease in the aperiodic exponent once the depression-like phenotype had been induced. The remission-like behavioral effects of ketamine alone correlated with a post-treatment increase in the offset and exponent, and decrease in sample entropy, both immediately and up to eight days post-treatment. The remission-like behavioral effects of mPFC DBS alone correlated with an immediate decrease in sample entropy, an immediate and sustained increase in low gamma (20-50 Hz) peak width and aperiodic offset, and sustained improvements in cognitive function. Failure to fully induce remission-like behavior in the combinatorial treatment group correlated with a failure to suppress an increase in sample entropy immediately after treatment. Conclusion: Our findings therefore support the potential of periodic theta parameters as biomarkers of depression-severity; and periodic low gamma parameters and cognitive measures as biomarkers of mPFC DBS treatment efficacy. They also support sample entropy and the aperiodic spectral parameters as potential cross-modal biomarkers of depression severity and the therapeutic efficacy of mPFC DBS and/or ketamine. Study of these biomarkers is important as objective measures of disease severity and predictive measures of therapeutic efficacy can be used to personalize care and promote the translatability of research across studies, modalities, and species.

SELECTION OF CITATIONS
SEARCH DETAIL