Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055214

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolism
2.
Emerg Infect Dis ; 30(4): 816-818, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526306

ABSTRACT

We used pathogen genomics to test orangutan specimens from a museum in Bonn, Germany, to identify the origin of the animals and the circumstances of their death. We found monkeypox virus genomes in the samples and determined that they represent cases from a 1965 outbreak at Rotterdam Zoo in Rotterdam, the Netherlands.


Subject(s)
Monkeypox virus , Museums , Animals , Genomics , Disease Outbreaks , Germany/epidemiology
3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892373

ABSTRACT

SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.


Subject(s)
Bronchi , COVID-19 , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21 , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Ki-67 Antigen , SARS-CoV-2 , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Cellular Senescence/genetics , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Epithelial Cells/metabolism , Epithelial Cells/virology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Ki-67 Antigen/metabolism , Bronchi/virology , Bronchi/metabolism , Bronchi/pathology , Bronchi/cytology , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/virology , Cystic Fibrosis/pathology , Cell Line
4.
Facial Plast Surg ; 39(6): 679-685, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36791802

ABSTRACT

This article demonstrates the ability to use autologous crushed cartilage grafts in rhinoplasty with rapid recovery and optimal nasal functionality without any tissue damage and allows its rapid rejuvenation. Eligible patients underwent primary rhinoplasty using autologous crushed cartilage graft followed by microscopy imaging of the grafted tissue after recovery. Tissue and cytological analysis using optical microscopy, transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM) showed complete viability of chondrocytes, formation of new collagen fibers, neo-perichondrium, neo-angiogenesis, and exhibiting optimal aesthetic outcome. The surgical approach is easy to perform, feasible, and less time-consuming, with excellent tissue rejuvenation and rapid recovery.


Subject(s)
Rhinoplasty , Humans , Rhinoplasty/methods , Gelatin , Esthetics, Dental , Cartilage/transplantation , Nose/surgery
5.
Physiol Rev ; 95(4): 1111-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269524

ABSTRACT

The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Signal Transduction/physiology , Animals , Humans , Mitochondrial Permeability Transition Pore , Oxidative Stress/physiology
6.
EMBO Rep ; 21(7): e49117, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32383545

ABSTRACT

Cancer cells undergo changes in metabolic and survival pathways that increase their malignancy. Isoform 2 of the glycolytic enzyme hexokinase (HK2) enhances both glucose metabolism and resistance to death stimuli in many neoplastic cell types. Here, we observe that HK2 locates at mitochondria-endoplasmic reticulum (ER) contact sites called MAMs (mitochondria-associated membranes). HK2 displacement from MAMs with a selective peptide triggers mitochondrial Ca2+ overload caused by Ca2+ release from ER via inositol-3-phosphate receptors (IP3Rs) and by Ca2+ entry through plasma membrane. This results in Ca2+ -dependent calpain activation, mitochondrial depolarization and cell death. The HK2-targeting peptide causes massive death of chronic lymphocytic leukemia B cells freshly isolated from patients, and an actionable form of the peptide reduces growth of breast and colon cancer cells allografted in mice without noxious effects on healthy tissues. These results identify a signaling pathway primed by HK2 displacement from MAMs that can be activated as anti-neoplastic strategy.


Subject(s)
Hexokinase , Neoplasms , Animals , Cell Death , Endoplasmic Reticulum/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Humans , Mice , Mitochondria , Mitochondrial Membranes/metabolism , Neoplasms/metabolism
7.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077122

ABSTRACT

SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , SARS-CoV-2
8.
Pharmacol Res ; 165: 105421, 2021 03.
Article in English | MEDLINE | ID: mdl-33429034

ABSTRACT

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Subject(s)
Membrane Proteins/deficiency , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Mitochondrial Permeability Transition Pore/metabolism , Muscle Proteins/deficiency , Triazoles/pharmacology , Zebrafish Proteins/deficiency , Animals , Animals, Genetically Modified , Cell Line, Transformed , Dose-Response Relationship, Drug , Humans , Locomotion/drug effects , Locomotion/physiology , Membrane Proteins/genetics , Muscle Proteins/genetics , Rhodamines/pharmacology , Triazoles/chemistry , Zebrafish , Zebrafish Proteins/genetics
9.
J Mol Cell Cardiol ; 144: 76-86, 2020 07.
Article in English | MEDLINE | ID: mdl-32454060

ABSTRACT

The mitochondrial permeability transition, an established mechanism for heart diseases, is a long-standing mystery of mitochondrial biology and a prime drug target for cardioprotection. Several hypotheses about its molecular nature have been put forward over the years, and the prevailing view is that permeabilization of the inner mitochondrial membrane follows opening of a high-conductance channel, the permeability transition pore, which is also called mitochondrial megachannel or multiconductance channel. The permeability transition strictly requires matrix Ca2+ and is favored by the matrix protein cyclophilin D, which mediates the inhibitory effects of cyclosporin A. Here we provide a review of the field, with specific emphasis on the possible role of the adenine nucleotide translocator and of the F-ATP synthase in channel formation, and on currently available small molecule inhibitors. While the possible mechanisms through which the adenine nucleotide translocator and the F-ATP synthase might form high-conductance channels remain unknown, reconstitution experiments and site-directed mutagenesis combined to electrophysiology have provided important clues. The hypothesis that more than one protein may act as a permeability transition pore provides a reasonable explanation for current controversies in the field, and holds great promise for the solution of the mystery of the permeability transition.


Subject(s)
Cardiotonic Agents/pharmacology , Mitochondria, Heart/drug effects , Mitochondria, Heart/physiology , Mitochondrial Permeability Transition Pore/metabolism , Animals , Biomarkers , Drug Discovery , Mice , Mice, Knockout , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Organic Anion Transporters/chemistry , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Permeability/drug effects , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization
10.
J Cell Mol Med ; 24(13): 7102-7114, 2020 07.
Article in English | MEDLINE | ID: mdl-32490600

ABSTRACT

Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.


Subject(s)
Cardiotonic Agents/metabolism , Ion Channels/metabolism , Mitochondria, Heart/metabolism , Animals , Calcium Channels/metabolism , Humans , Models, Biological , Translational Research, Biomedical
11.
J Biol Chem ; 294(28): 10987-10997, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31160339

ABSTRACT

The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Dimerization , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/genetics , Mutagenesis, Site-Directed , Protein Stability , Protein Subunits/genetics , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
12.
Pharmacol Res ; 151: 104548, 2020 01.
Article in English | MEDLINE | ID: mdl-31759087

ABSTRACT

Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.


Subject(s)
Cardiotonic Agents/therapeutic use , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Myocardial Reperfusion Injury/drug therapy , Small Molecule Libraries/therapeutic use , Animals , Cardiotonic Agents/pharmacology , Cell Line , Cells, Cultured , Humans , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Small Molecule Libraries/pharmacology
13.
EMBO Rep ; 19(2): 257-268, 2018 02.
Article in English | MEDLINE | ID: mdl-29217657

ABSTRACT

The permeability transition pore (PTP) is a Ca2+-dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)-ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP-dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch-clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F-ATP synthase.


Subject(s)
Histidine/metabolism , Hydrogen-Ion Concentration , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Cattle , Cell Line , Cell Membrane Permeability , Histidine/chemistry , Humans , Hydrolysis , Hypoxia/metabolism , Mice , Mitochondria, Liver/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Models, Molecular , Molecular Dynamics Simulation , Oxygen Consumption , Protein Conformation , Protein Subunits
14.
Int J Mol Sci ; 21(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349299

ABSTRACT

Autologous fat grafting is a surgical technique in which adipose tissue is transferred from one area of the body to another, in order to reconstruct or regenerate damaged or injured tissues. Before reinjection, adipose tissue needs to be purified from blood and cellular debris to avoid inflammation and preserve the graft viability. To perform this purification, different enzymatic and mechanical methods can be used. In this study, we characterized in vitro the product of a closed automatic device based on mechanical disaggregation, named Rigenera®, focusing on two sites of adipose tissue harvesting. At first, we optimized the Rigenera® operating timing, demonstrating that 60 s of treatment allows a higher cellular yield, in terms of the cell number and growth rate. This result optimizes the mechanical disaggregation and it can increase the clinical efficiency of the final product. When comparing the extracted adipose samples from the thigh and abdomen, our results showed that the thigh provides a higher number of mesenchymal-like cells, with a faster replication rate and a higher ability to form colonies. We can conclude that by collecting adipose tissue from the thigh and treating it with the Rigenera® device for 60 s, it is possible to obtain the most efficient product.


Subject(s)
Adipose Tissue/cytology , Stem Cells/cytology , Stem Cells/metabolism , Abdomen , Biomarkers , Cell Differentiation , Cell Separation , Cell Survival , Humans , Immunophenotyping , Thigh
15.
J Biol Chem ; 293(38): 14632-14645, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30093404

ABSTRACT

Modification with arginine-specific glyoxals modulates the permeability transition (PT) of rat liver mitochondria, with inhibitory or inducing effects that depend on the net charge of the adduct(s). Here, we show that phenylglyoxal (PGO) affects the PT in a species-specific manner (inhibition in mouse and yeast, induction in human and Drosophila mitochondria). Following the hypotheses (i) that the effects are mediated by conserved arginine(s) and (ii) that the PT is mediated by the F-ATP synthase, we have narrowed the search to 60 arginines. Most of these residues are located in subunits α, ß, γ, ϵ, a, and c and were excluded because PGO modification did not significantly affect enzyme catalysis. On the other hand, yeast mitochondria lacking subunit g or bearing a subunit g R107A mutation were totally resistant to PT inhibition by PGO. Thus, the effect of PGO on the PT is specifically mediated by Arg-107, the only subunit g arginine that has been conserved across species. These findings are evidence that the PT is mediated by F-ATP synthase.


Subject(s)
Arginine/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins , Mitochondrial Proton-Translocating ATPases/metabolism , Phenylglyoxal/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Calcium/metabolism , Catalysis , Dimerization , Drosophila , HEK293 Cells , Humans , Mice , Mitochondria/enzymology , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Species Specificity
16.
EMBO Rep ; 18(7): 1065-1076, 2017 07.
Article in English | MEDLINE | ID: mdl-28507163

ABSTRACT

F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase ß subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the ß subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.


Subject(s)
Calcium/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Biological Transport , Catalytic Domain , Cell Death , Cell Differentiation , Embryo, Nonmammalian/cytology , HeLa Cells , Humans , Hydrolysis , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Permeability , Protein Binding , Protein Conformation , Zebrafish/embryology
17.
Biochim Biophys Acta Bioenerg ; 1859(9): 901-908, 2018 09.
Article in English | MEDLINE | ID: mdl-29694828

ABSTRACT

Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363-369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.


Subject(s)
Ataxia/metabolism , Electron Transport Complex I/metabolism , Embryo, Nonmammalian/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Diseases/metabolism , Muscle Weakness/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Zebrafish/metabolism , Adenosine Triphosphate/metabolism , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Ataxia/pathology , Cell Respiration , Cells, Cultured , Electron Transport , Electron Transport Complex I/deficiency , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Mice , Mitochondria, Liver/drug effects , Mitochondrial Diseases/pathology , Muscle Weakness/pathology , Ubiquinone/chemistry , Ubiquinone/metabolism , Ubiquinone/pharmacology , Zebrafish/embryology
18.
J Cell Sci ; 129(8): 1671-84, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26945058

ABSTRACT

Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks/physiology , Collagen Type VI/genetics , Contracture/genetics , Mitochondria/physiology , Muscular Dystrophies/congenital , Mutation/genetics , Sclerosis/genetics , Animals , Autophagy/genetics , Gene Expression Profiling , Humans , Mice , Mice, Knockout , Microarray Analysis , Muscular Dystrophies/genetics , RNA/analysis
19.
Cell Physiol Biochem ; 50(5): 1840-1855, 2018.
Article in English | MEDLINE | ID: mdl-30423558

ABSTRACT

BACKGROUND/AIMS: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. METHODS: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. RESULTS: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. CONCLUSION: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Calcium/metabolism , Cryoelectron Microscopy , Dimerization , Membrane Potential, Mitochondrial , Mitochondrial Proton-Translocating ATPases/genetics , Mutagenesis, Site-Directed , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL