Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Article in English | MEDLINE | ID: mdl-35822551

ABSTRACT

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Subject(s)
Malaria Vaccines , Malaria , Saccharomycetales , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Humans , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/metabolism , Mice , Mice, Inbred BALB C , Pichia/genetics
2.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-25629663

ABSTRACT

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adenoviruses, Simian/immunology , Adult , Animals , Antibodies, Viral/blood , B-Lymphocytes/physiology , Cytokines/blood , Ebola Vaccines/administration & dosage , Female , Hemorrhagic Fever, Ebola/immunology , Humans , Immunity, Cellular , Immunization, Secondary , Male , Middle Aged , Pan troglodytes , T-Lymphocytes/physiology , Vaccinia , Young Adult
3.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25336730

ABSTRACT

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Adolescent , Adult , Antibodies, Protozoan/biosynthesis , Epitopes/immunology , Female , Genetic Vectors , Humans , Interferon-gamma/immunology , Liver/virology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Young Adult
4.
Mol Ther ; 22(2): 464-475, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166483

ABSTRACT

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , AIDS Vaccines/genetics , Adolescent , Adult , Amino Acid Sequence , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HIV Infections/prevention & control , HIV-1/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Virus Replication/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology
5.
Mol Ther ; 22(12): 2142-2154, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25156127

ABSTRACT

The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Protozoan/administration & dosage , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adenoviruses, Simian/genetics , Adult , Aluminum Hydroxide/administration & dosage , Antigens, Protozoan/immunology , Combined Modality Therapy , Genetic Vectors/administration & dosage , Humans , Immunization, Secondary , Male , Middle Aged , Oligodeoxyribonucleotides/administration & dosage , Orthopoxvirus/genetics , Vaccination , Young Adult
6.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24930599

ABSTRACT

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Subject(s)
Adenoviruses, Simian/genetics , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Vaccinia virus/genetics , Adult , Endemic Diseases , Gambia/epidemiology , Humans , Immunization, Secondary , Kenya/epidemiology , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Protozoan Proteins/genetics , T-Lymphocytes/immunology , United Kingdom
7.
Mol Ther ; 20(12): 2355-68, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23089736

ABSTRACT

The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.


Subject(s)
Antigens, Protozoan/immunology , Culicidae/parasitology , Culicidae/pathogenicity , Malaria Vaccines/therapeutic use , Merozoite Surface Protein 1/immunology , Adenoviruses, Simian/genetics , Animals , Flow Cytometry , Humans , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Orthopoxvirus/immunology , Pan troglodytes/virology
8.
J Infect Dis ; 205(5): 772-81, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22275401

ABSTRACT

BACKGROUND: Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8(+) T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. METHODS: From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen-specific CD8(+) and CD4(+) T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 10(10) viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. CONCLUSIONS: The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. CLINICAL TRIALS REGISTRATION: NCT00890019.


Subject(s)
Adenoviruses, Simian/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Adenoviruses, Simian/genetics , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epitopes , Flow Cytometry , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Malaria Vaccines/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Vaccines, DNA/adverse effects
9.
Mol Ther ; 19(12): 2269-76, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21862998

ABSTRACT

Efficacy trials of antibody-inducing protein-in-adjuvant vaccines targeting the blood-stage Plasmodium falciparum malaria parasite have so far shown disappointing results. The induction of cell-mediated responses in conjunction with antibody responses is thought to be one alternative strategy that could achieve protective efficacy in humans. Here, we prepared chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient vectors encoding the well-studied P. falciparum blood-stage malaria antigen merozoite surface protein 1 (MSP1). A phase Ia clinical trial was conducted in healthy adults of a ChAd63-MVA MSP1 heterologous prime-boost immunization regime. The vaccine was safe and generally well tolerated. Fewer systemic adverse events (AEs) were observed following ChAd63 MSP1 than MVA MSP1 administration. Exceptionally strong T-cell responses were induced, and these displayed a mixed of CD4(+) and CD8(+) phenotype. Substantial MSP1-specific serum immunoglobulin G (IgG) antibody responses were also induced, which were capable of recognizing native parasite antigen, but these did not reach titers sufficient to neutralize P. falciparum parasites in vitro. This viral vectored vaccine regime is thus a leading approach for the induction of strong cellular and humoral immunogenicity against difficult disease targets in humans. Further studies are required to assess whether this strategy can achieve protective efficacy against blood-stage malaria infection.


Subject(s)
Adenoviridae/genetics , CD4-Positive T-Lymphocytes/immunology , Genetic Vectors/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/therapy , Merozoite Surface Protein 1/immunology , Vaccinia virus/genetics , Adjuvants, Immunologic , Adult , Animals , Antibodies, Protozoan/immunology , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunity, Cellular , Immunoglobulin G/immunology , Immunologic Memory , Macaca mulatta , Malaria, Falciparum/blood , Male , Merozoite Surface Protein 1/blood , Merozoite Surface Protein 1/genetics , Mice , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Vaccination , Young Adult
10.
Nat Commun ; 12(1): 4636, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330906

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya Fever/immunology , Chikungunya virus/immunology , Viral Vaccines/immunology , Adolescent , Adult , Chikungunya Fever/prevention & control , Chikungunya Fever/virology , Chikungunya virus/classification , Chikungunya virus/physiology , Cytokines/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Fatigue/chemically induced , Female , Headache/chemically induced , Humans , Immunoglobulin G/immunology , Injections, Intramuscular , Male , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccination/methods , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL