Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 405
Filter
Add more filters

Publication year range
1.
Nature ; 571(7765): 393-397, 2019 07.
Article in English | MEDLINE | ID: mdl-31316195

ABSTRACT

Existing estimates of sea surface temperatures (SSTs) indicate that, during the early twentieth century, the North Atlantic and northeast Pacific oceans warmed by twice the global average, whereas the northwest Pacific Ocean cooled by an amount equal to the global average1-4. Such a heterogeneous pattern suggests first-order contributions from regional variations in forcing or in ocean-atmosphere heat fluxes5,6. These older SST estimates are, however, derived from measurements of water temperatures in ship-board buckets, and must be corrected for substantial biases7-9. Here we show that correcting for offsets among groups of bucket measurements leads to SST variations that correlate better with nearby land temperatures and are more homogeneous in their pattern of warming. Offsets are identified by systematically comparing nearby SST observations among different groups10. Correcting for offsets in German measurements decreases warming rates in the North Atlantic, whereas correcting for Japanese measurement offsets leads to increased and more uniform warming in the North Pacific. Japanese measurement offsets in the 1930s primarily result from records having been truncated to whole degrees Celsius when the records were digitized in the 1960s. These findings underscore the fact that historical SST records reflect both physical and social dimensions in data collection, and suggest that further opportunities exist for improving the accuracy of historical SST records9,11.


Subject(s)
Datasets as Topic/standards , Global Warming/statistics & numerical data , Seawater/analysis , Temperature , Air/analysis , Atlantic Ocean , Datasets as Topic/history , Geographic Mapping , Germany , Global Warming/history , History, 20th Century , Japan , Pacific Ocean , Reproducibility of Results
2.
Proc Natl Acad Sci U S A ; 119(26): e2203519119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727976

ABSTRACT

One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering-two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.


Subject(s)
Bacteroidetes , Firmicutes , Gastrointestinal Microbiome , In Situ Hybridization, Fluorescence , Spectrum Analysis, Raman , Bacteroidetes/metabolism , Firmicutes/metabolism , Humans , In Situ Hybridization, Fluorescence/methods , Isotopes , Single-Cell Analysis , Spectrum Analysis, Raman/methods , Sugars/metabolism
3.
Circulation ; 148(24): e187-e280, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37942682

ABSTRACT

The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Premature Birth , Adult , Female , Child , Infant, Newborn , Humans , First Aid , Consensus , Out-of-Hospital Cardiac Arrest/diagnosis , Out-of-Hospital Cardiac Arrest/therapy
4.
Environ Sci Technol ; 58(5): 2236-2246, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38252460

ABSTRACT

Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.


Subject(s)
Gastrointestinal Microbiome , Mycotoxins , Infant , Infant, Newborn , Female , Humans , Mycotoxins/urine , Biological Monitoring , RNA, Ribosomal, 16S , Tandem Mass Spectrometry/methods , Food Contamination/analysis
5.
Acta Obstet Gynecol Scand ; 103(5): 832-841, 2024 May.
Article in English | MEDLINE | ID: mdl-38268221

ABSTRACT

INTRODUCTION: Changes within the maternal microbiome during the last trimester of pregnancy and the determinants of the subsequent neonatal microbiome establishment after delivery by elective cesarean section are described. MATERIAL AND METHODS: Maternal vaginal and rectal microbiome samples were collected in the last trimester and before cesarean section; intrauterine cavity, placenta, neonatal buccal mucosa, skin, and meconium samples were obtained at birth; neonatal sample collection was repeated 2-3 days postnatally. Microbial community composition was analyzed by 16S rRNA gene amplicon sequencing. Relative abundance measurements of amplicon sequencing variants and sum counts at higher taxonomic levels were compared to test for significant overlap or differences in microbial community compositions. CLINICALTRIALS: gov ID: NCT04489056. RESULTS: A total of 30 mothers and their neonates were included with available microbiome samples for all maternal, intrauterine cavity and placenta samples, as well as for 18 of 30 neonates. The composition of maternal vaginal and rectal microbiomes during the last trimester of healthy pregnancies did not significantly change (permutational multivariate analysis of variance [PERMANOVA], p > 0.05). No robust microbial signature was detected in the intrauterine cavity, placenta, neonatal buccal mucosa, skin swabs, or meconium samples collected at birth. After birth, the neonatal microbiome was rapidly established, and significantly different microbial communities were detectable 2-3 days postnatally in neonate buccal mucosa and stool samples (PERMANOVA, p < 0.01). CONCLUSIONS: Maternal vaginal and rectal microbiomes in healthy pregnancies remain stable during the third trimester. No microbial colonization of the neonate was observed before birth in healthy pregnancies. Neonatal microbiomes in infants delivered by cesarean section displayed a taxonomic composition distinct from maternal vaginal and rectal microbiomes at birth, indicating that postnatal exposure to the extrauterine environment is the driving source of initial neonatal microbiome development in this cohort.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Female , Humans , Infant, Newborn , Pregnancy , Cesarean Section , Longitudinal Studies , Prospective Studies , RNA, Ribosomal, 16S/genetics
6.
J Acoust Soc Am ; 155(3): 2139-2150, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38498507

ABSTRACT

Phonatory instabilities and involuntary register transitions can occur during singing. However, little is known regarding the mechanisms which govern such transitions. To investigate this phenomenon, we systematically varied laryngeal muscle activation and airflow in an in vivo canine larynx model during phonation. We calculated voice range profiles showing average nerve activations for all combinations of fundamental frequency (F0) and sound pressure level (SPL). Further, we determined closed-quotient (CQ) and minimum-posterior-area (MPA) based on high-speed video recordings. While different combinations of muscle activation favored different combinations of F0 and SPL, in the investigated larynx there was a consistent region of instability at about 400 Hz which essentially precluded phonation. An explanation for this region may be a larynx specific coupling between sound source and subglottal tract or an effect based purely on larynx morphology. Register transitions crossed this region, with different combinations of cricothyroid and thyroarytenoid muscle (TA) activation stabilizing higher or lower neighboring frequencies. Observed patterns in CQ and MPA dependent on TA activation reproduced patterns found in singers in previous work. Lack of control of TA stimulation may result in phonation instabilities, and enhanced control of TA stimulation may help to avoid involuntary register transitions, especially in the singing voice.


Subject(s)
Laryngeal Muscles , Vocalization, Animal , Animals , Dogs , Laryngeal Muscles/physiology , Phonation/physiology , Sound , Video Recording
7.
Circulation ; 146(25): e483-e557, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36325905

ABSTRACT

This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. Topics covered by systematic reviews include cardiopulmonary resuscitation during transport; approach to resuscitation after drowning; passive ventilation; minimizing pauses during cardiopulmonary resuscitation; temperature management after cardiac arrest; use of diagnostic point-of-care ultrasound during cardiac arrest; use of vasopressin and corticosteroids during cardiac arrest; coronary angiography after cardiac arrest; public-access defibrillation devices for children; pediatric early warning systems; maintaining normal temperature immediately after birth; suctioning of amniotic fluid at birth; tactile stimulation for resuscitation immediately after birth; use of continuous positive airway pressure for respiratory distress at term birth; respiratory and heart rate monitoring in the delivery room; supraglottic airway use in neonates; prearrest prediction of in-hospital cardiac arrest mortality; basic life support training for likely rescuers of high-risk populations; effect of resuscitation team training; blended learning for life support training; training and recertification for resuscitation instructors; and recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 task forces have assessed, discussed, and debated the quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation criteria and generated consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections, and priority knowledge gaps for future research are listed.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Infant, Newborn , Child , Humans , First Aid , Consensus , Out-of-Hospital Cardiac Arrest/therapy , Emergency Treatment
8.
Circulation ; 145(9): e645-e721, 2022 03.
Article in English | MEDLINE | ID: mdl-34813356

ABSTRACT

The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research.


Subject(s)
COVID-19 , Cardiopulmonary Resuscitation , Emergency Medical Services , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/therapy , Humans , Infant , Infant, Newborn , Practice Guidelines as Topic
9.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834619

ABSTRACT

Opuntia joconostle is a semi-wild cactus cultivated for its fruit. However, the cladodes are often discarded, wasting the potentially useful mucilage in them. The mucilage is composed primarily of heteropolysaccharides, characterized by their molar mass distribution, monosaccharide composition, structural features (by vibrational spectroscopy, FT IR, and atomic force microscopy, AFM), and fermentability by known saccharolytic commensal members of the gut microbiota. After fractionation with ion exchange chromatography, four polysaccharides were found: one neutral (composed mainly of galactose, arabinose, and xylose) and three acidic, with a galacturonic acid content from 10 to 35%mol. Their average molar masses ranged from 1.8 × 105 to 2.8 × 105 g·mol-1. Distinct structural features such as galactan, arabinan, xylan, and galacturonan motifs were present in the FT IR spectra. The intra- and intermolecular interactions of the polysaccharides, and their effect on the aggregation behavior, were shown by AFM. The composition and structural features of these polysaccharides were reflected in their prebiotic potential. Lactobacilli and Bifidobacteria were not able to utilize them, whereas members of Bacteroidetes showed utilization capacity. The obtained data suggest a high economic potential for this Opuntia species, with potential uses such as animal feed in arid areas, precise prebiotic, and symbiotic formulations, or as the carbon skeleton source in a green refinery. Our methodology can be used to evaluate the saccharides as the phenotype of interest, helping to guide the breeding strategy.


Subject(s)
Opuntia , Opuntia/chemistry , Prebiotics , Plant Breeding , Polysaccharides/chemistry , Galactans
10.
Gastroenterology ; 161(4): 1245-1256.e20, 2021 10.
Article in English | MEDLINE | ID: mdl-34146566

ABSTRACT

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism. METHODS: The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays. RESULTS: Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea. CONCLUSIONS: The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Colitis, Ulcerative/microbiology , Colon/microbiology , Colonoscopy , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Irritable Bowel Syndrome/microbiology , Austria , Bacteria/metabolism , Bacteria/ultrastructure , Case-Control Studies , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Deep Learning , Germany , Humans , Image Interpretation, Computer-Assisted , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/pathology , Metabolomics , Microscopy, Confocal , Microscopy, Electron, Scanning , Predictive Value of Tests , Ribotyping
11.
J Acoust Soc Am ; 152(6): 3245, 2022 12.
Article in English | MEDLINE | ID: mdl-36586828

ABSTRACT

Laryngeal mucus hydrates and lubricates the deformable tissue of the vocal folds and acts as a boundary layer with the airflow from the lungs. However, the effects of the mucus' viscoelasticity on phonation remain widely unknown and mucus has not yet been established in experimental procedures of voice research. In this study, four synthetic mucus samples were created on the basis of xanthan with focus on physiological frequency-dependent viscoelastic properties, which cover viscosities and elasticities over 2 orders of magnitude. An established ex vivo experimental setup was expanded by a reproducible and controllable application method of synthetic mucus. The application method and the suitability of the synthetic mucus samples were successfully verified by fluorescence evidence on the vocal folds even after oscillation experiments. Subsequently, the impact of mucus viscoelasticity on the oscillatory dynamics of the vocal folds, the subglottal pressure, and acoustic signal was investigated with 24 porcine larynges (2304 datasets). Despite the large differences of viscoelasticity, the phonatory characteristics remained stable with only minor statistically significant differences. Overall, this study increased the level of realism in the experimental setup for replication of the phonatory process enabling further research on pathological mucus and exploration of therapeutic options.


Subject(s)
Larynx , Swine , Animals , Larynx/physiology , Vocal Cords/physiology , Phonation/physiology , Mucus , Acoustics
12.
Compr Rev Food Sci Food Saf ; 21(5): 3931-3962, 2022 09.
Article in English | MEDLINE | ID: mdl-36037277

ABSTRACT

A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.


Subject(s)
Diet , Phenols , Flavonoids/metabolism , Fruit , Humans , Molecular Weight
13.
Circulation ; 142(16_suppl_1): S284-S334, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33084394

ABSTRACT

This is the summary publication of the International Liaison Committee on Resuscitation's 2020 International Consensus on First Aid Science With Treatment Recommendations. It addresses the most recent published evidence reviewed by the First Aid Task Force science experts. This summary addresses the topics of first aid methods of glucose administration for hypoglycemia; techniques for cooling of exertional hyperthermia and heatstroke; recognition of acute stroke; the use of supplementary oxygen in acute stroke; early or first aid use of aspirin for chest pain; control of life-threatening bleeding through the use of tourniquets, hemostatic dressings, direct pressure, or pressure devices; the use of a compression wrap for closed extremity joint injuries; and temporary storage of an avulsed tooth. Additional summaries of scoping reviews are presented for the use of a recovery position, recognition of a concussion, and 6 other first aid topics. The First Aid Task Force has assessed, discussed, and debated the certainty of evidence on the basis of Grading of Recommendations, Assessment, Development, and Evaluation criteria and present their consensus treatment recommendations with evidence-to-decision highlights and identified priority knowledge gaps for future research.


Subject(s)
Emergency Medical Services/standards , First Aid/standards , Aspirin/administration & dosage , Bandages/standards , First Aid/methods , Glucose/administration & dosage , Heat Stroke/therapy , Hemorrhage/therapy , Humans , Hyperthermia/therapy , Hypoglycemia/drug therapy
14.
Environ Microbiol ; 23(6): 3037-3047, 2021 06.
Article in English | MEDLINE | ID: mdl-33876556

ABSTRACT

Recent human and animal studies have found associations between gut microbiota composition and serum levels of sex hormones, indicating that they could be an important factor in shaping the microbiota. However, little is known about the effect of regular hormonal fluctuations over the menstrual cycle or CHC-related changes of hormone levels on gut microbiota structure, diversity and dynamics. The aim of this study was to investigate the effect of CHCs on human gut microbiota composition. The effect of CHC pill intake on gut microbiota composition was studied in a group of seven healthy pre-menopausal women using the CHC pill, compared to the control group of nine age-matched healthy women that have not used hormonal contraceptives in the 6 months prior to the start of the study. By analysing the gut microbiota composition in both groups during one menstrual cycle, we found that CHC usage is associated with a minor decrease in gut microbiota diversity and differences in the abundance of several bacterial taxa. These results call for further investigation of the mechanisms underlying hormonal and hormonal contraceptive-related changes of the gut microbiota and the potential implications of these changes for women's health.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Contraceptive Agents , Female , Humans , Infant , Menstrual Cycle
15.
Magn Reson Med ; 85(5): 2524-2536, 2021 05.
Article in English | MEDLINE | ID: mdl-33226163

ABSTRACT

PURPOSE: Evaluate the relationship between muscle microstructure, diffusion time (Δ), and the diffusion tensor (DT) to identify the optimal Δ where changes in muscle fiber size may be detected. METHODS: The DT was simulated in models with histology informed geometry over a range of Δ with a stimulated echo DT imaging (DTI) sequence using the numerical simulation application DifSim. The difference in the DT at each Δ between healthy and injured skeletal muscle models was calculated, to identify the optimal Δ at which changes in muscle fiber size may be detected. The random permeable barrier model (RPBM) was used to estimate muscle microstructure from the simulated DT measurements, which were compared to the ground truth. RESULTS: Across all models, fractional anisotropy provided greater contrast between injured and control models than diffusivity measurements. Compared to control models, in atrophic injury models, the greatest difference in the DT was found between 90 ms and 250 ms. In models with acute edema, the contrast between injured and control muscle increased with increasing diffusion time, although these models had smaller mean fiber areas. RPBM systematically underestimated fiber size but accurately estimated surface area-to-volume ratio of simulated models. CONCLUSION: These findings may better inform pulse sequence parameter selection when performing DTI experiments in vivo. If only a single diffusion experiment can be performed, the selected Δ should be ~170 ms to maximize the ability to discriminate between different injury models. Ideally several diffusion times between 90 ms and 500 ms should be sampled in order to maximize diffusion contrast, particularly when the disease process is unknown.


Subject(s)
Diffusion Tensor Imaging , Muscle, Skeletal , Anisotropy , Diffusion Magnetic Resonance Imaging , Muscle Fibers, Skeletal , Muscle, Skeletal/diagnostic imaging
16.
NMR Biomed ; 34(12): e4595, 2021 12.
Article in English | MEDLINE | ID: mdl-34327758

ABSTRACT

Exercises to strengthen and stabilize the trunk musculature are a common conservative treatment strategy for low back pain (LBP), despite the possible presence of impairments in muscle activation in this population. Intravoxel incoherent motion (IVIM) MRI permits evaluation of activation-induced blood flow through diffusion-weighted images that are sensitized to microvascular blood flow. In the current study we aimed to evaluate IVIM signal changes after exercise in patients with LBP compared with pain-free healthy controls and determine if these changes were related to reductions in disability with a 12-week rehabilitation program. We hypothesize that the magnitude of changes in IVIM parameters in the lumbar extensor muscles will be smaller in patients with LBP compared with those without LBP, and that these magnitudes will be correlated with responsiveness to a 12-week, resistance-based exercise program. IVIM MR data for molecular diffusion (D), blood flow pseudodiffusion (D*) and perfusion fraction (f) were collected before and immediately after an ~ 3-min session of high-intensity lumbar extension resistance exercise in 16 healthy participants and 17 participants with LBP. Improvements in LBP-related disability after the 12-week, machine-based, high-intensity exercise rehabilitation program were measured in the LBP group. We observed a significant increase in all IVIM parameters (f, D*, D) in response to exercise (p < 0.0001) and an interaction of group-by-time for D (p = 0.016). Thresholds were identified using receiver operating characteristic (ROC) curves for diffusion and pseudodiffusion coefficients, which predicted a reduction in LBP-related disability in response to the 12-week, exercise-based rehabilitation program. Exercise was associated with an increase in (f), capillary blood flow-based pseudodiffusion (D*) and diffusion coefficient (D), regardless of the presence of LBP. Additionally, subgroup analysis identified patients who were not responsive to the acute exercise session, for whom, based on ROC analysis, there was no clinically significant change in disability following the 12-week program.


Subject(s)
Exercise Therapy , Low Back Pain/diagnostic imaging , Low Back Pain/rehabilitation , Magnetic Resonance Imaging/methods , Adult , Aged , Female , Humans , Low Back Pain/physiopathology , Male , Middle Aged
17.
J Exp Biol ; 224(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34109985

ABSTRACT

Granular substrates ranging from silt to gravel cover much of the Earth's land area, providing an important habitat for fossorial animals. Many of these animals use their heads to penetrate the substrate. Although there is considerable variation in head shape, how head shape affects fossorial locomotor performance in different granular substrates is poorly understood. Here, head shape variation for 152 species of fossorial lizards was quantified for head diameter, slope and pointiness of the snout. The force needed to penetrate different substrates was measured using 28 physical models spanning this evolved variation. Ten substrates were considered, ranging in particle size from 0.025 to 4 mm in diameter and consisting of spherical or angular particles. Head shape evolved in a weakly correlated manner, with snouts that were gently sloped being blunter. There were also significant clade differences in head shape among fossorial lizards. Experiments with physical models showed that as head diameter increased, absolute penetration force increased but force normalized by cross-sectional area decreased. Penetration force decreased for snouts that tapered more gradually and were pointier. Larger and angular particles required higher penetration forces, although intermediate size spherical particles, consistent with coarse sand, required the lowest force. Particle size and head diameter effect were largest, indicating that fossorial burrowers should evolve narrow heads and bodies, and select relatively fine particles. However, variation in evolved head shapes and recorded penetration forces suggests that kinematics of fossorial movement are likely an important factor in explaining evolved diversity.


Subject(s)
Lizards , Animals , Ecosystem , Head , Lizards/anatomy & histology , Locomotion , Particle Size
18.
Nature ; 524(7563): 105-8, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26222031

ABSTRACT

Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.


Subject(s)
Archaea/metabolism , Cyanates/metabolism , Nitrification , Aerobiosis , Ammonia/metabolism , Ammonium Compounds/metabolism , Archaea/enzymology , Archaea/genetics , Archaea/growth & development , Carbon Dioxide/metabolism , Carbon-Nitrogen Lyases/genetics , Carbon-Nitrogen Lyases/metabolism , Environmental Microbiology , Metagenome/genetics , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Nitrogen Cycle , Oxidation-Reduction
19.
Arch Toxicol ; 95(7): 2533-2549, 2021 07.
Article in English | MEDLINE | ID: mdl-33847775

ABSTRACT

The human gut microbiota plays an important role in the maintenance of human health. Factors able to modify its composition might predispose the host to the development of pathologies. Among the various xenobiotics introduced through the diet, Alternaria mycotoxins are speculated to represent a threat for human health. However, limited data are currently available about the bidirectional relation between gut microbiota and Alternaria mycotoxins. In the present work, we investigated the in vitro effects of different concentrations of a complex extract of Alternaria mycotoxins (CE; containing eleven mycotoxins; e.g. 0.153 µM alternariol and 2.3 µM altersetin, at the maximum CE concentration tested) on human gut bacterial strains, as well as the ability of the latter to metabolize or adsorb these compounds. Results from the minimum inhibitory concentration assay showed the scarce ability of CE to inhibit the growth of the tested strains. However, the growth kinetics of most of the strains were negatively affected by exposure to the various CE concentrations, mainly at the highest dose (50 µg/mL). The CE was also found to antagonize the formation of biofilms, already at concentrations of 0.5 µg/mL. LC-MS/MS data analysis of the mycotoxin concentrations found in bacterial pellets and supernatants after 24 h incubation showed the ability of bacterial strains to adsorb some Alternaria mycotoxins, especially the key toxins alternariol, alternariol monomethyl ether, and altersetin. The tendency of these mycotoxins to accumulate within bacterial pellets, especially in those of Gram-negative strains, was found to be directly related to their lipophilicity.


Subject(s)
Gastrointestinal Microbiome , Mycotoxins , Alternaria/metabolism , Chromatography, Liquid , Food Contamination/analysis , Humans , Lactones/toxicity , Mycotoxins/metabolism , Tandem Mass Spectrometry/methods
20.
Proc Natl Acad Sci U S A ; 115(22): 5786-5791, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29735671

ABSTRACT

Electron transport within living cells is essential for energy conservation in all respiring and photosynthetic organisms. While a few bacteria transport electrons over micrometer distances to their surroundings, filaments of cable bacteria are hypothesized to conduct electric currents over centimeter distances. We used resonance Raman microscopy to analyze cytochrome redox states in living cable bacteria. Cable-bacteria filaments were placed in microscope chambers with sulfide as electron source and oxygen as electron sink at opposite ends. Along individual filaments a gradient in cytochrome redox potential was detected, which immediately broke down upon removal of oxygen or laser cutting of the filaments. Without access to oxygen, a rapid shift toward more reduced cytochromes was observed, as electrons were no longer drained from the filament but accumulated in the cellular cytochromes. These results provide direct evidence for long-distance electron transport in living multicellular bacteria.


Subject(s)
Bacteria/chemistry , Bacteria/metabolism , Electron Transport/physiology , Cytochromes/metabolism , Geologic Sediments/microbiology , Oxidation-Reduction , Oxygen/metabolism , Spectrum Analysis, Raman , Sulfides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL