Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Publication year range
1.
Nature ; 565(7738): 213-217, 2019 01.
Article in English | MEDLINE | ID: mdl-30626943

ABSTRACT

Metal-organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid1,2 or flexible3. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure4,5. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide6,7, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule)8. Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.

2.
Angew Chem Int Ed Engl ; 63(18): e202400188, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38445547

ABSTRACT

The first systematic exploration of the synthesis and reactivity of naphthoquinonynes is described. Routes to two regioisomeric Kobayashi-type naphthoquinonyne precursors have been developed, and the reactivity of the ensuing 6,7- and 5,6-aryne intermediates has been investigated. Remarkably, these studies have revealed that a broad range of cycloadditions, nucleophile additions and difunctionalizations can be achieved while maintaining the integrity of the highly sensitive quinone unit. The methodologies offer a powerful diversity oriented approach to C6 and C7 functionalized naphthoquinones, which are typically challenging to access. From a reactivity viewpoint, the study is significant because it demonstrates that aryne-based functionalizations can be utilized strategically in the presence of highly reactive and directly competing functionality.

3.
Biochem J ; 479(24): 2511-2527, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36504127

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.


Subject(s)
Anti-Infective Agents , Pseudomonas Infections , Humans , Fluoroquinolones/pharmacology , Fluoroquinolones/metabolism , Fluoroquinolones/therapeutic use , Aminoglycosides/pharmacology , Pseudomonas aeruginosa , Virulence Factors/metabolism , Moxifloxacin/pharmacology , Genotype , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , ADP Ribose Transferases/genetics , Anti-Bacterial Agents/metabolism , Tobramycin/metabolism , Tobramycin/pharmacology , Ciprofloxacin/metabolism , Ciprofloxacin/pharmacology , Anti-Infective Agents/pharmacology , Bacterial Proteins/metabolism
4.
Histochem Cell Biol ; 158(4): 383-388, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36006466

ABSTRACT

Eosin Y is a common stain in histology. Although usually used for colourimetric imaging where the dye is used to stain pink/red a range of structures in the tissue, Eosin Y is also a fluorochrome, and has been used in this manner for decades. In this study our aim was to investigate the fluorescence properties of the dye to enable quantification of structures within formalin-fixed paraffin-embedded (FFPE) tissue sections. To do this, FFPE sections of hamster tissue were prepared with haematoxylin and eosin Y dyes. Spectral detection on a confocal laser scanning microscope was used to obtain the fluorescence emission spectra of the eosin Y under blue light. This showed clear spectral differences between the red blood cells and congealed blood, compared to the rest of the section. The spectra were so distinct that it was possible to discern these in fluorescence and multi-photon microscopy. An image analysis algorithm was used to quantify the red blood cells. These analyses could have broad applications in histopathology where differentiation is required, such as the analysis of clotting disorders to haemorrhage or damage from infectious disease.


Subject(s)
Fluorescent Dyes , Formaldehyde , Eosine Yellowish-(YS) , Lung , Microscopy, Confocal , Paraffin Embedding/methods , Tissue Fixation
5.
Biochem J ; 478(3): 647-668, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33459338

ABSTRACT

Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Evaluation, Preclinical/methods , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cells, Cultured , Drug Synergism , Epithelial Cells , Epithelium, Corneal/cytology , HeLa Cells , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Moxifloxacin/pharmacology , Protein Conformation , Recombinant Proteins/drug effects , Transfection
6.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30617067

ABSTRACT

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Wolbachia/drug effects , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Female , Male , Mice , Mice, SCID , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Pyrimidines/pharmacology , Quinazolines/pharmacology
7.
Angew Chem Int Ed Engl ; 61(9): e202114573, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34878706

ABSTRACT

The choice of metal and linker together define the structure and therefore the guest accessibility of a metal-organic framework (MOF), but the large number of possible metal-linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three-dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components' chemistry and the MOF porosity. Pore dimensions of the guest-accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations.

8.
J Am Chem Soc ; 142(35): 14903-14913, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786807

ABSTRACT

Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.

9.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31413132

ABSTRACT

Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells.IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.


Subject(s)
Gene Products, gag/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Defective Viruses/genetics , Defective Viruses/immunology , Gene Products, gag/genetics , Genetic Vectors/genetics , Genetic Vectors/immunology , Macaca fascicularis , Male , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Vaccination , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Load
10.
J Med Virol ; 92(12): 3584-3595, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32181899

ABSTRACT

GB virus B (GBV-B) is a new world monkey-associated flavivirus used to model acute hepatitis C virus (HCV) infection. Critical for evaluation of antiviral or vaccine approaches is an understanding of the effect of HCV on the liver at different stages of infection. In the absence of longitudinal human tissue samples at defined time points, we have characterized changes in tamarins. As early as 2 weeks post-infection histological changes were noticeable, and these were established in all animals by 6 weeks. Despite high levels of liver-associated viral RNA, there was reversal of hepatic damage on clearance of peripheral virus though fibrosis was demonstrated in four tamarins. Notably, viral RNA burden in the liver dropped to near undetectable or background levels in all animals which underwent a second viral challenge, highlighting the efficacy of the immune response in removing foci of replication in the liver. These data add to the knowledge of GBV-B infection in New World primates which can offer attractive systems for the testing of prophylactic and therapeutic treatments and the evaluation of their utility in preventing or reversing liver pathology.

11.
Allergy ; 75(3): 636-647, 2020 03.
Article in English | MEDLINE | ID: mdl-31549414

ABSTRACT

BACKGROUND: Abacavir is associated with hypersensitivity reactions in individuals positive for the HLA-B*57:01 allele. The drug binds within the peptide binding groove of HLA-B*57:01 altering peptides displayed on the cell surface. Presentation of these HLA-abacavir-peptide complexes to T-cells is hypothesized to trigger a CD8+ T-cell response underpinning the hypersensitivity. Thus, the aim of this study was to explore the relationship between the structure of abacavir with HLA-B*57:01 binding and the CD8+ T-cell activation. METHODS: Seventeen abacavir analogues were synthesized and cytokine secretion from abacavir/abacavir analogue-responsive CD8+ T-cell clones was measured using IFN-γ ELIspot. In silico docking studies were undertaken to assess the predicted binding poses of the abacavir analogues within the HLA-B*57:01 peptide binding groove. In parallel, the effect of selected abacavir analogues on the repertoire of self-peptides presented by cellular HLA-B*57:01 was characterized using mass spectrometry. RESULTS: Abacavir and ten analogues stimulated CD8+ T-cell IFN-γ release. Molecular docking of analogues that retained antiviral activity demonstrated a relationship between predicted HLA-B*57:01 binding orientations and the ability to induce a T-cell response. Analogues that stimulated T-cells displayed a perturbation of the natural peptides displayed by HLA-B*57:01. The antigen-specific CD8+ T-cell response was dependent on the enantiomeric form of abacavir at both cyclopropyl and cyclopentyl regions. CONCLUSION: Alteration of the chemical constitution of abacavir generates analogues that retain a degree of pharmacological activity, but have variable ability to activate T-cells. Modelling and immunopeptidome analysis delineate how drug HLA-B*57:01 binding and peptide display by antigen presenting cells relate to the activation of CD8+ T-cells.


Subject(s)
CD8-Positive T-Lymphocytes , Drug Hypersensitivity , Dideoxynucleosides , HLA-B Antigens/genetics , Humans , Molecular Docking Simulation , Structure-Activity Relationship
13.
Biochem J ; 475(15): 2435-2455, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29934490

ABSTRACT

Protein tyrosine sulfation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulfation is catalysed by two Golgi-resident enzymes termed tyrosylprotein sulfotransferases (TPSTs) 1 and 2, which transfer sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulfation assays has hampered the development of chemical biology approaches for the identification of small-molecule inhibitors of tyrosine sulfation. In the present paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulfation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set, we identified oxindole-based inhibitors of the Ser/Thr kinase RAF (rapidly accelerated fibrosarcoma) as low-micromolar inhibitors of TPST1 and TPST2. Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulfotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulfation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors.


Subject(s)
Imidazoles/chemistry , Membrane Proteins , Peptides/chemistry , Proto-Oncogene Proteins B-raf , Pyridines/chemistry , Sulfotransferases , Tyrosine/chemistry , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/chemistry , Sulfotransferases/antagonists & inhibitors , Sulfotransferases/chemistry
14.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29934491

ABSTRACT

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Subject(s)
Avian Proteins/chemistry , Heparitin Sulfate/chemistry , Oligosaccharides/chemistry , Protein Kinase Inhibitors/chemistry , Sulfotransferases/chemistry , raf Kinases/antagonists & inhibitors , Animals , Avian Proteins/genetics , Chickens , Heparitin Sulfate/pharmacology , Humans , Oligosaccharides/pharmacology , Protein Kinase Inhibitors/pharmacology , Sulfotransferases/genetics , Swine , raf Kinases/chemistry
15.
Neurobiol Dis ; 118: 40-54, 2018 10.
Article in English | MEDLINE | ID: mdl-29940336

ABSTRACT

The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 µM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Succinimides/therapeutic use , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Animals , Animals, Genetically Modified , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Caenorhabditis elegans , Female , Male , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Succinimides/chemistry , TDP-43 Proteinopathies/pathology
16.
Article in English | MEDLINE | ID: mdl-29311092

ABSTRACT

Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply, and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum antiparasitic activity but also have in vitro antifungal activity that includes Cryptococcus neoformans Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships, and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans, with a modal MIC of 0.125 mg/liter using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal ß-tubulin. Rapid fungicidal activity was evident in a hollow-fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg of body weight/day) orally resulted in an ∼2 log10CFU/g reduction in fungal burden compared with that in vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the cerebrospinal fluid (CSF) or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis.


Subject(s)
Antifungal Agents/therapeutic use , Drug Repositioning/methods , Mebendazole/analogs & derivatives , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/microbiology , Mycoses/drug therapy , Mycoses/microbiology , Animals , Antiparasitic Agents/therapeutic use , Benzimidazoles/therapeutic use , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/pathogenicity , Female , Fluconazole/therapeutic use , Male , Mebendazole/therapeutic use , Mice , Microbial Sensitivity Tests , Rabbits , Rats , Swine
17.
PLoS Pathog ; 12(12): e1006083, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28002473

ABSTRACT

In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity.


Subject(s)
SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Virus Replication/immunology , Animals , Immunohistochemistry , Immunophenotyping , Macaca mulatta , Polymerase Chain Reaction , Vaccines, Attenuated
18.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25564664

ABSTRACT

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Subject(s)
Antimalarials/metabolism , Electron Transport Complex III/metabolism , Pyridones/metabolism , Binding Sites , Electron Transport Complex III/chemistry , Molecular Docking Simulation
19.
J Am Chem Soc ; 138(11): 3745-51, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26909538

ABSTRACT

Understanding the mechanistic details of the superoxide induced solvent degradation, is important in the development of stable electrolytes for lithium-oxygen (Li-O2) batteries. Propylene carbonate (PC) decomposition on a model electrode surface is studied here using in situ attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The sensitivity of the SEIRAS technique to the interfacial region allows investigation of subtle changes in the interface region during electrochemical reactions. Our SEIRAS studies show that the superoxide induced ring opening reaction of PC is determined by the electrolyte cation. Computational modeling of the proposed reaction pathway of superoxide with PC revealed a large difference in the activation energy barriers when Li(+) was the countercation compared with tetraethylammonium (TEA(+)), due to the coordination of Li(+) to the carbonate functionality. While the degradation of cyclic organic carbonates during the Li-O2 battery discharge process is a well-established case, understanding these details are of significant importance toward a rational selection of the Li-O2 battery electrolytes; our work signifies the use of SEIRAS technique in this direction.

20.
J Gen Virol ; 96(Pt 7): 1918-29, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25834093

ABSTRACT

Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus-host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.


Subject(s)
SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vaccination/methods , Animals , Macaca fascicularis , Macrophages/virology , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/genetics , Superinfection/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL