Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33771926

ABSTRACT

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , CD4 Antigens/genetics , Catarrhini/genetics , Catarrhini/virology , Genetic Variation , HIV , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus , Alleles , Animals , CD4 Antigens/chemistry , Evolution, Molecular , Gene Products, env/chemistry , Humans , Protein Binding , Protein Domains
2.
Nat Commun ; 14(1): 1033, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823144

ABSTRACT

The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.


Subject(s)
Histocompatibility Antigens Class I , Malaria, Falciparum , Pan paniscus , Plasmodium , Animals , Malaria, Falciparum/genetics , Pan paniscus/genetics , Pan paniscus/parasitology , Peptides , Phylogeny , Histocompatibility Antigens Class I/genetics
3.
Curr Biol ; 17(5): 412-7, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17320393

ABSTRACT

Although tool use is known to occur in species ranging from naked mole rats [1] to owls [2], chimpanzees are the most accomplished tool users [3-5]. The modification and use of tools during hunting, however, is still considered to be a uniquely human trait among primates. Here, we report the first account of habitual tool use during vertebrate hunting by nonhumans. At the Fongoli site in Senegal, we observed ten different chimpanzees use tools to hunt prosimian prey in 22 bouts. This includes immature chimpanzees and females, members of age-sex classes not normally characterized by extensive hunting behavior. Chimpanzees made 26 different tools, and we were able to recover and analyze 12 of these. Tool construction entailed up to five steps, including trimming the tool tip to a point. Tools were used in the manner of a spear, rather than a probe or rousing tool. This new information on chimpanzee tool use has important implications for the evolution of tool use and construction for hunting in the earliest hominids, especially given our observations that females and immature chimpanzees exhibited this behavior more frequently than adult males.


Subject(s)
Animals, Wild/physiology , Pan troglodytes/physiology , Predatory Behavior , Tool Use Behavior , Animals , Female , Male , Senegal , Strepsirhini
4.
Genome Biol Evol ; 11(11): 3269-3274, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31697367

ABSTRACT

The Laverania clade comprises the human malaria parasite Plasmodium falciparum as well as at least seven additional parasite species that infect wild African apes. A recent analysis of Laverania genome sequences (Otto TD, et al. 2018. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol. 3: 687-697) reported three instances of interspecies gene transfer, one of which had previously been described. Generating gene sequences from additional ape parasites and re-examining sequencing reads generated in the Otto et al. study, we identified one of the newly described gene transfers as an assembly artifact of sequences derived from a sample coinfected by two parasite species. The second gene transfer between ancestors of two divergent chimpanzee parasite lineages was confirmed, but involved a much larger number of genes than originally described, many of which encode exported proteins that remodel, or bind to, erythrocytes. Because successful hybridization between Laverania species is very rare, it will be important to determine to what extent these gene transfers have shaped their host interactions.


Subject(s)
Genetic Introgression , Pan troglodytes/parasitology , Plasmodium/genetics , Virulence/genetics , Animals , Evolution, Molecular , Humans , Malaria/parasitology , Phylogeny , Plasmodium/pathogenicity
5.
Folia Primatol (Basel) ; 79(3): 162-71, 2008.
Article in English | MEDLINE | ID: mdl-18057910

ABSTRACT

The last part of the chimpanzee (Pan troglodytes) habituation process of the Taï South Group was monitored over 2 years (1994-1996), during which all males and most of the females became habituated to observation by humans. The time needed (5-7 years) to habituate the community was similar to that recorded for the Taï North Group and is comparable to other populations studied in Africa. Variation emerged in habituation rate: males were habituated earlier than females, and among females, sexually cycling individuals were habituated faster than non-cycling females. Such differences may be a function of both the methods used to find the chimpanzees and the sex of the individual. Reproductive status and individuality may also have influenced habituation rates by affecting the number of contacts required to habituate a chimpanzee to neutral humans.


Subject(s)
Habituation, Psychophysiologic , Pan troglodytes/psychology , Animals , Cote d'Ivoire , Ecosystem , Escape Reaction , Female , Humans , Male , Menstruation , Reproduction , Sex Characteristics , Time Factors
6.
mBio ; 9(2)2018 03 27.
Article in English | MEDLINE | ID: mdl-29588401

ABSTRACT

Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction.IMPORTANCE The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification.


Subject(s)
Gastrointestinal Microbiome/physiology , Animals , Ecology , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , RNA, Ribosomal, 16S/genetics
7.
Nat Commun ; 8(1): 1635, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29158512

ABSTRACT

Malaria parasites, though widespread among wild chimpanzees and gorillas, have not been detected in bonobos. Here, we show that wild-living bonobos are endemically Plasmodium infected in the eastern-most part of their range. Testing 1556 faecal samples from 11 field sites, we identify high prevalence Laverania infections in the Tshuapa-Lomami-Lualaba (TL2) area, but not at other locations across the Congo. TL2 bonobos harbour P. gaboni, formerly only found in chimpanzees, as well as a potential new species, Plasmodium lomamiensis sp. nov. Rare co-infections with non-Laverania parasites were also observed. Phylogenetic relationships among Laverania species are consistent with co-divergence with their gorilla, chimpanzee and bonobo hosts, suggesting a timescale for their evolution. The absence of Plasmodium from most field sites could not be explained by parasite seasonality, nor by bonobo population structure, diet or gut microbiota. Thus, the geographic restriction of bonobo Plasmodium reflects still unidentified factors that likely influence parasite transmission.


Subject(s)
Malaria/veterinary , Pan paniscus/parasitology , Plasmodium/isolation & purification , Primate Diseases/parasitology , Animals , Animals, Wild/parasitology , Congo , Feces/parasitology , Malaria/parasitology , Phylogeny , Plasmodium/classification , Plasmodium/genetics
8.
Nat Commun ; 5: 3346, 2014.
Article in English | MEDLINE | ID: mdl-24557500

ABSTRACT

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.


Subject(s)
Malaria/physiopathology , Plasmodium vivax/classification , Plasmodium vivax/genetics , Africa , Animals , Asia , Evolution, Molecular , Phylogeny , Plasmodium vivax/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL