Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 742, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080521

ABSTRACT

The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.


Subject(s)
Anthrax , Bacillus anthracis , Phylogeny , Bacillus anthracis/genetics , Bacillus anthracis/classification , Bacillus anthracis/isolation & purification , South Africa , Anthrax/microbiology , Anthrax/epidemiology , Anthrax/veterinary , Genotype , Genome, Bacterial , Soil Microbiology , Whole Genome Sequencing
2.
J Clin Microbiol ; 60(3): e0229121, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35195442

ABSTRACT

The zoonotic disease anthrax, caused by the endospore-forming bacterium Bacillus anthracis, is very rare in Germany. In the state of Bavaria, the last case occurred in July of 2009, resulting in four dead cows. In August of 2021, the disease reemerged after heavy rains, killing one gestating cow. Notably, both outbreaks affected the same pasture, suggesting a close epidemiological connection. B. anthracis could be grown from blood culture, and the presence of both virulence plasmids (pXO1 and pXO2) was confirmed by PCR. Also, recently developed diagnostic tools enabled rapid detection of B. anthracis cells and nucleic acids directly in clinical samples. The complete genome of the strain isolated from blood, designated BF-5, was DNA sequenced and phylogenetically grouped within the B.Br.CNEVA clade, which is typical for European B. anthracis strains. The genome was almost identical to BF-1, the isolate from 2009, separated only by three single nucleotide polymorphisms (SNPs) on the chromosome, one on plasmid pXO2 and three indel regions. Further, B. anthracis DNA was detected by PCR from soil samples taken from spots in the pasture where the cow had fallen. New tools based on phage receptor-binding proteins enabled the microscopic detection and isolation of B. anthracis directly from soil samples. These environmental isolates were genotyped and found to be identical to BF-5 in terms of SNPs. Therefore, it seems that the BF-5 genotype is currently the prevalent one at the affected premises. The area contaminated by the cadaver was subsequently disinfected with formaldehyde.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Anthrax/epidemiology , Anthrax/veterinary , Bacillus anthracis/genetics , Cattle , Female , Humans , Plasmids/genetics , Soil , Virulence
3.
Bioinformatics ; 35(24): 5318-5320, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31368484

ABSTRACT

MOTIVATION: Compared to traditional haploid reference genomes, graph genomes are an efficient and compact data structure for storing multiple genomic sequences, for storing polymorphisms or for mapping sequencing reads with greater sensitivity. Further, graphs are well-studied computer science objects that can be efficiently analyzed. However, their adoption in genomic research is slow, in part because of the cognitive difficulty in interpreting graphs. RESULTS: We present an intuitive graphical representation for graph genomes that re-uses well-honed techniques developed to display public transport networks, and demonstrate it as a web tool. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/vgteam/sequenceTubeMap. DEMONSTRATION: https://vgteam.github.io/sequenceTubeMap/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Genome , Software , Genomics , Sequence Analysis, DNA
4.
BMC Microbiol ; 18(1): 102, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30176810

ABSTRACT

BACKGROUND: Anthrax, the zoonotic disease caused by the gram-positive bacterium Bacillus anthracis, is nowadays rare in northern parts of Europe including Finland and Scandinavia. Only two minor outbreaks of anthrax in 1988 and in 2004 and one sporadic infection in 2008 have been detected in animals in Finland since the 1970's. Here, we report on two Finnish B. anthracis strains that were isolated from spleen and liver of a diseased calf related to the outbreak in 1988 (strain HKI4363/88) and from a local scrotum and testicle infection of a bull in 2008 (strain BA2968). These infections occurred in two rural Finnish regions, i.e., Ostrobothnia in western Finland and Päijänne Tavastia in southern Finland, respectively. RESULTS: The isolates were genetically characterized by PCR-based methods such as multilocus variable number of tandem repeat analysis (MLVA) and whole genome-sequence analysis (WGS). Phylogenetic comparison of the two strains HKI4363/88 and BA2968 by chromosomal single nucleotide polymorphism (SNP) analysis grouped these organisms within their relatives of the minor canonical A-branch canSNP-group A.Br.003/004 (A.Br.V770) or canonical B-branch B.Br.001/002, respectively. Strain HKI4363/88 clustered relatively closely with other members of the A.Br.003/004 lineage from Europe, South Africa, and South America. In contrast, strain BA2968 clearly constituted a new sublineage within B.Br.001/002 with its closest relative being HYO01 from South Korea. CONCLUSIONS: Our results suggest that Finland harbors both unique (autochthonous) and more widely distributed, common clades of B. anthracis. We suspect that members of the common clades such as strains HKI4363/88 have been introduced only recently by anthropogenic activities involving importation of contaminated animal products. On the other hand, autochthonous strains such as isolate BA2968 probably have an older history of their introduction into Finland as evidenced by a high number of single nucleotide variant sites in their genomes.


Subject(s)
Anthrax/veterinary , Bacillus anthracis/isolation & purification , Cattle Diseases/microbiology , Phylogeny , Animals , Anthrax/microbiology , Bacillus anthracis/classification , Bacillus anthracis/genetics , Cattle , Finland , Genome, Bacterial , Genotype , Polymorphism, Single Nucleotide
5.
BMC Vet Res ; 13(1): 220, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28701192

ABSTRACT

BACKGROUND: Bacillus (B.) anthracis, the causal agent of anthrax, is effectively controlled by the Sterne live spore vaccine (34F2) in animals. However, live spore vaccines are not suitable for simultaneous vaccination and antibiotic treatment of animals being at risk of infection in an outbreak situation. Non-living vaccines could close this gap. RESULTS: In this study a combination of recombinant protective antigen and recombinant Bacillus collagen-like antigen (rBclA) with or without formalin inactivated spores (FIS), targeted at raising an immune response against both the toxins and the spore of B. anthracis, was tested for immunogenicity and protectiveness in goats. Two groups of goats received from local farmers of the Kars region of Turkey were immunized thrice in three weeks intervals and challenged together with non-vaccinated controls with virulent B. anthracis, four weeks after last immunization. In spite of low or none measurable toxin neutralizing antibodies and a surprisingly low immune response to the rBclA, 80% of the goats receiving the complete vaccine were protected against a lethal challenge. Moreover, the course of antibody responses indicates that a two-step vaccination schedule could be sufficient for protection. CONCLUSION: The combination of recombinant protein antigens and FIS induces a protective immune response in goats. The non-living nature of this vaccine would allow for a concomitant antibiotic treatment and vaccination procedure. Further studies should clarify how this vaccine candidate performs in a post infection scenario controlled by antibiotics.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/veterinary , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Goat Diseases/prevention & control , Membrane Glycoproteins/immunology , Peptides/immunology , Spores, Bacterial/immunology , Animals , Anthrax/immunology , Anthrax/prevention & control , Bacillus anthracis/pathogenicity , Formaldehyde , Goat Diseases/immunology , Goats , Peptides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Spores, Bacterial/pathogenicity , Turkey
6.
Pathogens ; 13(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057820

ABSTRACT

Bacillus anthracis is a rare but highly dangerous zoonotic bacterial pathogen. At the beginning of this century, a new manifestation of the disease, injectional anthrax, emerged as a result of recreational heroin consumption involving contaminated drugs. The organisms associated with this 13-year-lasting outbreak event in European drug consumers were all grouped into the canonical single-nucleotide polymorphism (canSNP) clade A-branch (A.Br.) 161 of B. anthracis. Related clade A.Br.161 strains of B. anthracis not associated with heroin consumption have also been identified from different countries, mostly in Asia. Because of inadvertent spread by anthropogenic activities, other strains of this A.Br.161 lineage were, however, isolated from several countries. Thus, without additional isolates from this clade, its origin of evolution or its autochthonous region remains obscure. Here, we genomically characterized six new A.Br.161 group isolates, some of which were from Iran, with others likely historically introduced into Germany. All the chromosomes of these isolates could be grouped into a distinct sub-clade within the A.Br.161 clade. This sub-clade is separated from the main A.Br.161 lineage by a single SNP. We have developed this SNP into a PCR assay facilitating the future attribution of strains to this group.

7.
Appl Environ Microbiol ; 79(12): 3756-61, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584788

ABSTRACT

Scavenging of anthrax carcasses has long been hypothesized to play a critical role in the production of the infectious spore stage of Bacillus anthracis after host death, though empirical studies assessing this are lacking. We compared B. anthracis spore production, distribution, and survival at naturally occurring anthrax herbivore carcasses that were either experimentally caged to exclude vertebrate scavengers or left unmanipulated. We found no significant effect of scavengers on soil spore density (P > 0.05). Soil stained with terminally hemorrhaged blood and with nonhemorrhagic fluids exhibited high levels of B. anthracis spore contamination (ranging from 10(3) to 10(8) spores/g), even in the absence of vertebrate scavengers. At most of the carcass sites, we also found that spore density in samples taken from hemorrhagic-fluid-stained soil continued to increase for >4 days after host death. We conclude that scavenging by vertebrates is not a critical factor in the life cycle of B. anthracis and that anthrax control measures relying on deterrence or exclusion of vertebrate scavengers to prevent sporulation are unlikely to be effective.


Subject(s)
Bacillus anthracis/growth & development , Carnivory/physiology , Food Chain , Spores, Bacterial/growth & development , Animals , Herbivory , Models, Statistical , Namibia , Soil/analysis , Soil Microbiology
8.
BMC Vet Res ; 9: 265, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24373579

ABSTRACT

BACKGROUND: Presently, few data exist on the level and duration of anti-protective antigen (PA) IgG in vaccinated livestock. Various adaptation of enzyme-linked immunosorbent assays (ELISAs) have been developed in studies to assess immune response following vaccination, albeit mostly in laboratory rodent models. The quantitative anti-anthrax IgG ELISA in this study describes a method of enumerating the concentration of anti-PA specific IgG present in sera of immunized goats, with the aid of an affinity-purified caprine polyclonal anti-anthrax PA-83 IgG standard. This was compared with the anthrax toxin neutralization assay (TNA) which measures a functional subset of toxin neutralizing anti-PA IgG. RESULTS: The measured concentrations obtained in the standard curve correlated with the known concentration at each dilution. Percentage recovery of the standard concentrations ranged from 89 to 98% (lower and upper asymptote respectively). Mean correlation coefficient (r2) of the standard curve was 0.998. Evaluation of the intra-assay coefficient of variation showed ranges of 0.23-16.90% and 0.40-12.46% for days 28 and 140 sera samples respectively, following vaccination. The mean inter-assay coefficient of variation for triplicate samples repeated on 5 different days was 18.53 and 12.17% for days 28 and 140 sera samples respectively. Spearman's rank correlation of log-transformed IgG concentrations and TNA titres showed strong positive correlation (rs = 0.942; p = 0.01). CONCLUSION: This study provides evidence that an indirect ELISA can be used for the quantification of anti-anthrax PA IgG in goats with the added advantage of using single dilutions to save time and resources. The use of such related immunoassays can serve as potential adjuncts to potency tests for Sterne and other vaccine types under development in ruminant species. This is the first report on the correlation of polyclonal anti-anthrax PA83 antibody with the TNA in goats.


Subject(s)
Anthrax Vaccines/therapeutic use , Anthrax/veterinary , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Goat Diseases/immunology , Immunoglobulin G/immunology , Neutralization Tests/veterinary , Animals , Anthrax/immunology , Anthrax/prevention & control , Anthrax Vaccines/immunology , Enzyme-Linked Immunosorbent Assay/methods , Goat Diseases/microbiology , Goat Diseases/prevention & control , Goats/immunology , Neutralization Tests/methods
9.
Appl Opt ; 52(5): 1066-75, 2013 Feb 10.
Article in English | MEDLINE | ID: mdl-23400069

ABSTRACT

Monte Carlo (MC) simulations are frequently used to simulate the radial distribution of remitted fluorescence light from tissue surfaces upon pencil beam excitation to gather information about influences of different tissue parameters. Here, the "weighted direct emission method" (WDEM) is proposed, which uses a weighted MC simulation approach for both excitation and fluorescence photons, and is compared to four other methods in terms of accuracy and speed, and using a broad range of tissue-relevant optical parameters. The WDEM is 5.2× faster on average than a fixed weight MC approach while still preserving its accuracy. Additional gain of speed can be achieved by implementing it on graphics processing units.

10.
Lasers Surg Med ; 45(4): 225-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23533060

ABSTRACT

BACKGROUND AND OBJECTIVE: Interstitial photodynamic therapy (iPDT) of non-resectable recurrent glioblastoma using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) has shown a promising outcome. It remained unclear, however, to what extent inter- and intra-tumoural differences of PpIX concentrations influence the efficacy of iPDT. In the current pilot study, we analysed PpIX concentrations quantitatively and assessed PpIX induced fluorescence and photobleaching intraoperatively. MATERIALS AND METHODS: Five patients harbouring non-resectable glioblastomas were included. ALA (20 or 30 mg/kg body weight) was given 5-8 hours before treatment. Stereotactic biopsies were taken throughout the tumour volume for both histological analysis and determination of PpIX concentrations, which were measured by chemical extraction. Cylindrical light diffusors were stereotactically implanted. Prior to and after irradiation, fluorescence measurements were performed. Outcome measurement was based on clinical and neuro-radiological follow up. RESULTS: In three patients, a strong PpIX fluorescence was seen before treatment, which was completely photobleached after iPDT. High concentrations of PpIX could be detected in viable tumour parts of these patients (mean PpIX uptake per tumour: 1.4-3.0 µM). In the other two patients, however, no or only low PpIX uptake (0-0.6 µM) could be detected. The patients with strong PpIX uptake showed treatment response and long-term clinical stabilisation (no progression in 29, 30 and 36 months), early treatment failure was seen in the remaining two patients (death after 3 and 9 months). CONCLUSIONS: Intra-tumoural PpIX concentrations exhibited pronounced inter- and intra-tumoural variations in glioblastoma, which are directly linked to variable degrees of fluorescence intensity. High intra-tumoural PpIX concentrations with strong fluorescence intensity and complete photobleaching after iPDT seem to be associated with favourable outcome. Real-time monitoring of PpIX fluorescence intensity and photobleaching turned out to be feasible and safe and might be employed for early treatment prognosis of iPDT.


Subject(s)
Aminolevulinic Acid/pharmacokinetics , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacokinetics , Protoporphyrins/metabolism , Adult , Aged , Aminolevulinic Acid/therapeutic use , Biomarkers/metabolism , Biopsy , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Female , Fluorescence , Follow-Up Studies , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Photobleaching , Photosensitizing Agents/therapeutic use , Pilot Projects , Prospective Studies , Spectrometry, Fluorescence , Treatment Outcome
11.
Org Biomol Chem ; 10(42): 8524-32, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23010801

ABSTRACT

Anthrax tetrasaccharide is an oligosaccharide expressed at the outermost surface of the Bacillus anthracis spores, featuring three rhamnoses and a rare sugar called anthrose. This motif has now been identified as a plausible component of future human vaccines against anthrax. We report herein the synthesis of a 2-O-demethylated-ß-D-anthropyranosyl-(1→3)-α-L-rhamnopyranose disaccharide analogue of this tetrasaccharide from a cyclic sulfate intermediate. This disaccharide conjugated to BSA induces an anti-native tetrasaccharide IgG antibody response when administered in BALB/c mice. Moreover, induced sera bound to native B. anthracis endospores. These results suggest that the disaccharide analogue, easily amenable for a synthetic scale-up, could be used in a glycoconjugate antigen formulation.


Subject(s)
Anthrax Vaccines/chemistry , Anthrax Vaccines/therapeutic use , Anthrax/prevention & control , Bacillus anthracis/immunology , Disaccharides/chemistry , Disaccharides/therapeutic use , Polysaccharides, Bacterial/analogs & derivatives , Animals , Anthrax/immunology , Anthrax/microbiology , Anthrax Vaccines/chemical synthesis , Anthrax Vaccines/immunology , Bacillus anthracis/chemistry , Cattle , Disaccharides/chemical synthesis , Disaccharides/immunology , Female , Glycoconjugates/chemical synthesis , Glycoconjugates/chemistry , Glycoconjugates/immunology , Glycoconjugates/therapeutic use , Humans , Immunization , Mice , Mice, Inbred BALB C , Polysaccharides, Bacterial/immunology , Serum Albumin, Bovine/chemical synthesis , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/immunology , Serum Albumin, Bovine/therapeutic use , Spores, Bacterial/chemistry , Spores, Bacterial/immunology
12.
Transbound Emerg Dis ; 69(6): 3952-3963, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36383491

ABSTRACT

Brucellosis is one of the most common neglected zoonotic diseases globally, with a public health significance and a high economic loss in the livestock industry caused by the bacteria of the genus Brucella. In this study, 136 Egyptian Brucella melitensis strains isolated from animals and humans between 2001 and 2020 were analysed by examining the whole-core-genome single-nucleotide polymorphism (cgSNP) in comparison to the in silico multilocus variable number of tandem repeat analysis (MLVA-16). Almost all Egyptian isolates were belonging to the West Mediterranean clade, except two isolates from buffalo and camel were belonging to the American and East Mediterranean clades, respectively. A significant correlation between the human case of brucellosis and the possible source of infection from animals was found. It seems that several outbreak strains already existing for many years have been spread over long distances and between many governorates. The cgSNP analysis, in combination with epidemiological metadata, allows a better differentiation than the MLVA-16 genotyping method and, hence, the source definition and tracking of outbreak strains. The MLVA based on the currently used 16 markers is not suitable for this task. Our results revealed 99 different cgSNP genotypes with many different outbreak strains, both older and widely distributed ones and rather newly introduced ones as well. This indicates several different incidents and sources of infections, probably by imported animals from other countries to Egypt. Comparing our panel of isolates to public databases by cgSNP analysis, the results revealed near relatives from Italy. Moreover, near relatives from the United States, France, Austria and India were found by in silico MLVA.


Subject(s)
Brucella melitensis , Brucellosis , Humans , Animals , Brucella melitensis/genetics , Egypt/epidemiology , Polymorphism, Single Nucleotide , Multilocus Sequence Typing/veterinary , Brucellosis/epidemiology , Brucellosis/veterinary , Genotype , Minisatellite Repeats/genetics , Genetic Variation
13.
RNA Biol ; 8(6): 938-46, 2011.
Article in English | MEDLINE | ID: mdl-21955586

ABSTRACT

The overwhelming majority of small nucleolar RNAs (snoRNAs) fall into two clearly defined classes characterized by distinctive secondary structures and sequence motifs. A small group of diverse ncRNAs, however, shares the hallmarks of one or both classes of snoRNAs but differs substantially from the norm in some respects. Here, we compile the available information on these exceptional cases, conduct a thorough homology search throughout the available metazoan genomes, provide improved and expanded alignments, and investigate the evolutionary histories of these ncRNA families as well as their mutual relationships.


Subject(s)
Coiled Bodies/metabolism , Nucleic Acid Conformation , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , Animals , Base Sequence , Genome/genetics , Humans , Molecular Sequence Data , Phylogeny , RNA, Small Nucleolar/classification , Sequence Alignment/methods , Sequence Homology, Nucleic Acid
14.
One Health ; 13: 100255, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027005

ABSTRACT

Brucellosis is a highly contagious and incapacitating disease of humans, livestock and wildlife species globally. Treatment of brucellosis in animals is not recommended, and in humans, combinations of antibiotics recommended by the World Health Organization are used. However, sporadic antimicrobial-resistant (AMR) isolates and relapse cases have been reported from different endemic regions. In the current study, molecular characterization and antibiotic susceptibility testing using the microdilution method for 35 B. abortus and B. melitensis strains isolated from humans, milk and animal were carried out. Additionally, Next-Generation-Sequencing (NGS) technology was applied to confirm Brucella at the species level and investigate AMR and pathogenicity-associated determinants. MALDI-TOF seemed to be a rapid and reliable tool for routine identification of brucellae to the genus level; however, DNA-based identification is indispensable for accurate species identification. Brucella abortus strains were isolated from two human cases and a sheep. Such infections are uncommon in Egypt. Egyptian Brucella strains are still in-vitro susceptible to doxycycline, tetracyclines, gentamicin, ciprofloxacin, levofloxacin, chloramphenicol, streptomycin, trimethoprim/sulfamethoxazole and tigecycline. Probable (no CLSI/EUCAST breakpoints have been defined yet) in-vitro resistance to rifampicin and azithromycin was observed. WGS failed to determine classical AMR genes, and no difference in the distribution of virulence-associated genes in all isolates was found. Isolates of human and non-human origins were still susceptible to the majority of antibiotics used for treatment in humans. The absence of classical AMR genes in genomes of "resistant" Brucella strains may reflect a lack of information in databases, or resistance might not be encoded by single resistance genes. The One Health approach is necessary for tackling brucellosis. Continuous susceptibility testing, updating of breakpoints, assessing mutations that lead to resistance are needed.

15.
Microorganisms ; 9(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576838

ABSTRACT

Brucellosis, caused by the bacteria of the genus Brucella, is one of the most neglected common zoonotic diseases globally with a public health significance and a high economic loss among the livestock industry worldwide. Since little is known about the distribution of B. abortus in Egypt, a total of 46 B. abortus isolates recovered between 2012-2020, plus one animal isolate from 2006, were analyzed by examining the whole core genome single nucleotide polymorphism (cgSNP) in comparison to the in silico multilocus variable number of tandem repeat analysis (MLVA). Both cgSNP analysis and MLVA revealed three clusters and one isolate only was distantly related to the others. One cluster identified a rather widely distributed outbreak strain which is repeatedly occurring for at least 16 years with marginal deviations in cgSNP analysis. The other cluster of isolates represents a rather newly introduced outbreak strain. A separate cluster comprised RB51 vaccine related strains, isolated from aborted material. The comparison with MLVA data sets from public databases reveals one near relative from Argentina to the oldest outbreak strain and a related strain from Spain to a newly introduced outbreak strain in Egypt. The distantly related isolate matches with a strain from Portugal in the MLVA profile. Based on cgSNP analysis the oldest outbreak strain clusters with strains from the UK. Compared to the in silico analysis of MLVA, cgSNP analysis using WGS data provides a much higher resolution of genotypes and, when correlated to the associated epidemiological metadata, cgSNP analysis allows the differentiation of outbreaks by defining different outbreak strains. In this respect, MLVA data are error-prone and can lead to incorrect interpretations of outbreak events.

16.
Eur J Microbiol Immunol (Bp) ; 10(2): 29-63, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32590343

ABSTRACT

Anthrax is an infectious disease of relevance for military forces. Although spores of Bacillus anthracis obiquitously occur in soil, reports on soil-borne transmission to humans are scarce. In this narrative review, the potential of soil-borne transmission of anthrax to humans is discussed based on pathogen-specific characteristics and reports on anthrax in the course of several centuries of warfare. In theory, anthrax foci can pose a potential risk of infection to animals and humans if sufficient amounts of virulent spores are present in the soil even after an extended period of time. In praxis, however, transmissions are usually due to contacts with animal products and reported events of soil-based transmissions are scarce. In the history of warfare, even in the trenches of World War I, reported anthrax cases due to soil-contaminated wounds are virtually absent. Both the perspectives and the experience of the Western hemisphere and of former Soviet Republics are presented. Based on the accessible data as provided in the review, the transmission risk of anthrax by infections of wounds due to spore-contaminated soil is considered as very low under the most circumstance. Active historic anthrax foci may, however, still pose a risk to the health of deployed soldiers.

17.
Vaccines (Basel) ; 8(4)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050254

ABSTRACT

: Sterne live spore vaccine (SLSV) is the current veterinary anthrax vaccine of choice. Unlike the non-living anthrax vaccine (NLAV) prototype, SLSV is incompatible with concurrent antibiotics use in an anthrax outbreak scenario. The NLAV candidates used in this study include a crude recombinant protective antigen (CrPA) and a purified recombinant protective antigen (PrPA) complemented by formalin-inactivated spores and Emulsigen-D®/Alhydrogel® adjuvants. Cattle were vaccinated twice (week 0 and 3) with NLAVs plus penicillin-G (Pen-G) treatment and compared to cattle vaccinated twice with SLSV alone and with Pen-G treatment. The immunogenicity was assessed using ELISA against rPA and FIS, toxin neutralisation assay (TNA) and opsonophagocytic assay. The protection was evaluated using an in vivo passive immunisation mouse model. The anti-rPA IgG titres for NLAVs plus Pen-G and SLSV without Pen-G treatment showed a significant increase, whereas the titres for SLSV plus Pen-G were insignificant compared to pre-vaccination values. A similar trend was measured for IgM, IgG1, and IgG2 and TNA titres (NT50) showed similar trends to anti-rPA titres across all vaccine groups. The anti-FIS IgG and IgM titres increased significantly for all vaccination groups at week 3 and 5 when compared to week 0. The spore opsonising capacity increased significantly in the NLAV vaccinated groups including Pen-G treatment and the SLSV without Pen-G but much less in the SLSV group with Pen-G treatment. Passive immunization of A/J mice challenged with a lethal dose of 34F2 spores indicated significant protective capacity of antibodies raised in the SLSV and the PrPA + FIS + adjuvants vaccinated and Pen-G treated groups but not for the NLAV with the CrPA + FIS + adjuvants and the SLSV vaccinated and Pen-G treated group. Our findings indicate that the PrPA + FIS + Emulsigen-D®/Alhydrogel® vaccine candidate may provide the same level of antibody responses and protective capacity as the SLSV. Advantageously, it can be used concurrently with Penicillin-G in an outbreak situation and as prophylactic treatment in feedlots and valuable breeding stocks.

18.
Pathogens ; 9(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664259

ABSTRACT

The Sterne live spore vaccine (SLSV, Bacillus anthracis strain 34F2) is the veterinary vaccine of choice against anthrax though contra-indicated for use with antimicrobials. However, the use of non-living anthrax vaccine (NLAV) candidates can overcome the SLSV limitation. In this study, cattle were vaccinated with either of the NLAV (purified recombinant PA (PrPA) or crude rPA (CrPA) and formaldehyde-inactivated spores (FIS of B. anthracis strain 34F2) and emulsigen-D®/alhydrogel® adjuvants) or SLSV. The immunogenicity of the NLAV and SLSV was assessed and the protective efficacies evaluated using a passive immunization mouse model. Polyclonal IgG (including the IgG1 subset) and IgM responses increased significantly across all vaccination groups after the first vaccination. Individual IgG subsets titres peaked significantly with all vaccines used after the second vaccination at week 5 and remained significant at week 12 when compared to week 0. The toxin neutralization (TNA) titres of the NLAV vaccinated cattle groups showed similar trends to those observed with the ELISA titres, except that the former were lower, but still significant, when compared to week 0. The opsonophagocytic assay indicated good antibody opsonizing responses with 75% (PrPA+FIS), 66% (CrPA+FIS) and 80% (SLSV) phagocytosis following spores opsonization. In the passive protection test, A/J mice transfused with purified IgG from cattle vaccinated with PrPA+FIS+Emulsigen-D®/Alhydrogel® and SLSV had 73% and 75% protection from challenge with B. anthracis strain 34F2 spores, respectively, whereas IgG from cattle vaccinated with CrPA+FIS+Emulsigen-D®/Alhydrogel® offered insignificant protection of 20%. There was no difference in protective immune response in cattle vaccinated twice with either the PrPA+FIS or SLSV. Moreover, PrPA+FIS did not show any residual side effects in vaccinated cattle. These results suggest that the immunogenicity and protective efficacy induced by the NLAV (PrPA+FIS) in the cattle and passive mouse protection test, respectively, are comparable to that induced by the standard SLSV.

19.
Int J Circumpolar Health ; 79(1): 1715698, 2020 12.
Article in English | MEDLINE | ID: mdl-32046614

ABSTRACT

Population growth, socio-cultural and economic changes as well as technological progress have an immediate impact on the environment and human health in particular. Our steadily rising needs of resources increase the pressure on the environment and narrow down untainted habitats for plants and wild animals. Balance and resilience of ecosystems are further threatened by climate change, as temperature and seasonal shifts increase the pressure for all species to find successful survival strategies. Arctic and subarctic regions are especially vulnerable to climate change, as thawing of permafrost significantly transforms soil structures, vegetation and habitats. With rising temperature, the risk of zoonotic diseases in the Republic of Sakha (Yakutia) has also increased. As vegetation periods prolong and habitats broaden, zoonotic pathogens and their vectors find more favourable living conditions. Moreover, permafrost degradation may expose historic burial grounds and allow for reviving the vectors of deadly infections from the past. To assess the current state of knowledge and emerging risks in the light of the "One Health" concept, a German-Russian Symposium took place on 13 August 2018 in Yakutsk, Russian Federation. This symposium report presents the main findings generated from presentations and discussions.


Subject(s)
Animals, Wild , Climate Change , Environmental Health/statistics & numerical data , Zoonoses/epidemiology , Animals , Arctic Regions/epidemiology , Congresses as Topic , Humans , Risk Factors , Russia/epidemiology
20.
Appl Environ Microbiol ; 75(22): 7229-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19767470

ABSTRACT

This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.


Subject(s)
Bacillus anthracis/classification , Bacterial Typing Techniques/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Bacillus/chemistry , Bacillus/classification , Bacillus/metabolism , Bacillus anthracis/chemistry , Bacillus anthracis/metabolism , Bacillus cereus/chemistry , Bacillus cereus/classification , Bacillus cereus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomarkers/analysis , Cluster Analysis , Databases, Protein , Neural Networks, Computer , Proteome , Sensitivity and Specificity , Spores, Bacterial/chemistry , Spores, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL