Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cytokine ; 179: 156621, 2024 07.
Article in English | MEDLINE | ID: mdl-38648682

ABSTRACT

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.


Subject(s)
Chagas Disease , Leukocytes, Mononuclear , Microalgae , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Chagas Disease/immunology , Chagas Disease/drug therapy , Chagas Disease/parasitology , Microalgae/chemistry , Plant Extracts/pharmacology , Cytokines/metabolism
2.
Appl Microbiol Biotechnol ; 106(2): 497-504, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34985569

ABSTRACT

Wounds are a public health problem due to long periods required to repair damaged skin, risk of infection, and amputations. Thus, there is a need to obtain new therapeutic agents with less side effects, more effective oxygen delivery, and increased epithelial cell migration. Photosynthetic microorganisms, such as microalgae and cyanobacteria, may be used as a source of biomolecules for the treatment of different injuries. The aim of this review article focuses on healing potential using phytoconstituents from photosynthetic microorganisms. Cyanophyte Spirulina and Chlorophyte Chlorella are more promising due to steroids, triterpenes, carbohydrates, phenols, and proteins such as lectins and phycocyanin. However, there are few reports about identification and specific function of these molecules on the skin. In other microalgae and cyanobacteria genus, high contents of pigments such as ß-carotene, chlorophyll a, allophycocyanin, and hydroxypheophytin were detected, but their effects on phases of wound healing is absent yet. The development of new topical drugs from photosynthetic microorganisms could be a potential alternative to maximize healing. KEY POINTS: • Conventional treatment to skin injuries has limitations. • Proteins, terpenes, and phenols increase collagen deposition and re-epithelialization. • Microalgae and cyanobacteria may be used as a source of biomolecules to wound healing.


Subject(s)
Chlorella , Microalgae , Chlorophyll A , Collagen , Photosynthesis
3.
Prep Biochem Biotechnol ; 50(7): 655-663, 2020.
Article in English | MEDLINE | ID: mdl-32068481

ABSTRACT

The partitioning and purification of lectins from the crude extract of Cratylia mollis seeds (Cramoll 1,4) was investigated in aqueous two-phase systems (ATPS). A factorial design model (24) was used to evaluate the influence of polyethylene glycol (PEG) molar mass (1500-8000 g/mol), PEG concentration (12.5-17.5% w/w), phosphate (10-15% w/w) concentration, and pH (6-8) on the differential partitioning, purification factor, and yield of the lectin. Polymer and salt concentration were the most important variables affecting partition of lectin and used to find optimum purification factor by experimental Box-Behnken design together with the response surface methodology (RSM). ATPS showed best conditions composed by 13.9% PEG1500, 15.3% phosphate buffer at pH 6, which ensured purification factor of 4.70. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of protein with 26.1 kDa. Furthermore, results demonstrated a thermostable lectin presenting activity until 60 °C and lost hemagglutinating activity at 80 °C. According to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of lectins.


Subject(s)
Lectins/chemistry , Lectins/isolation & purification , Phaseolus/chemistry , Plant Extracts/chemistry , Electrophoresis, Polyacrylamide Gel , Hemagglutinins/chemistry , Hydrogen-Ion Concentration , Phosphates/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Seeds/chemistry , Spectrophotometry , Surface Properties , Temperature
4.
Int J Biol Macromol ; 269(Pt 1): 132094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705318

ABSTRACT

This work presents a magnetic purification method of human erythrocyte Acetylcholinesterase (EC 3.1.1.7; AChE) based on affinity binding to procainamide (Proca) as ligand. Acetylcholinesterase is an acetylcholine-regulating enzyme found in different areas of the body and associated with various neurological disorders, such as Parkinson, Alzheymer and Amyotrophic Lateral Sclerosis. AChE from human erythrocyte purification has been attempted in recent years with low degree of purity. Here, magnetic nanoparticles (MNP) were synthesized and coated with polyaniline (PANI) and procainamide (PROCA) was covalently linked to the PANI. The extracted human erythrocyte AChE formed a complex with the MNP@PANI-PROCA and an external magnet separated it from the undesired proteins. Finally, the enzyme was collected by increasing the ionic strength. Experimental Box-Behnken design was developed to optimize this process of human erythrocyte AChE purification protocol. The enzyme was purified in all fifteen experiments. However, the best AChE purification result was achieved, about 2000 times purified, when 100 mg of MNP@PANI-PROCA was incubated for one hour with 4 ml hemolysate extract. The SDS-PAGE of this preparation presented a molecular weight of approximately 70 kDa, corroborating with few previous studies of AChE from erythrocyte purification.


Subject(s)
Acetylcholinesterase , Erythrocytes , Magnetite Nanoparticles , Procainamide , Humans , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/isolation & purification , Erythrocytes/enzymology , Magnetite Nanoparticles/chemistry , Procainamide/chemistry , Aniline Compounds/chemistry
5.
Carbohydr Polym ; 334: 122061, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553245

ABSTRACT

The galactomannan-based gel from Cassia grandis seeds was used to incorporate Penicillium sp. UCP 1286 and commercial collagenases. Experiments were carried out according to a 23-full factorial design to identify the most significant parameters for the incorporation process. The pH of the incorporation solution (pHi), stirring time (t), and initial protein concentration in the crude extract (PCi) were selected as the three independent variables, and the efficiency of collagenase incorporation (E) and collagenolytic activity (CA) after 360 min as the responses. pHi and PCi showed positive statistically significant effects on E, while CA was positively influenced by pHi and t, but negatively by PCi. The fungi collagenase was released from the gel following a pseudo-Fickian behavior. Additionally, no <76 % of collagenase was efficiently incorporated into the gel retaining a high CA (32.5-69.8 U/mL). The obtained results for the commercial collagenase (E = 93.88 %, CA = 65.8 U/mL, and n = 0.10) demonstrated a pseudo-Fickian behavior similar to the fungi-collagenase. The results confirm the biotechnological potential of the gel as an efficient matrix for the incorporation of catalytic compounds; additionally, the incorporation of collagenases was achieved by retaining the proteases CA and releasing them in a controlled manner.


Subject(s)
Cassia , Galactose/analogs & derivatives , Mannans , Cassia/chemistry , Collagenases/chemistry , Fungi/metabolism , Seeds/chemistry
6.
Immunobiology ; 229(1): 152779, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118344

ABSTRACT

The therapeutic regimen for the treatment of American Tegumentary Leishmaniasis (ATL) is targeted at the death of the parasite; therefore, it is essential to develop a treatment that can act on the parasite, combined with the modulation of the inflammatory profile. Thus, the aim of this study was to make an in vitro evaluation of the therapeutic potential of Chlorella vulgaris extract (CV) and Imiquimod for ATL. Selectivity indices (SI) were determined by inhibitory concentration assays (IC50) in L. braziliensis cells and cytotoxic concentrations (CC50) were measured in human cells using the MTT method, based on the CV microalgae extract (IC50 concentrations of 15.63 to 500 µg/mL; CC50 concentrations of 62.5-1000 µg/mL) in comparison with the reference drugs and Imiquimod. The immune response was evaluated in healthy human cells by gene expression (RT-qPCR) and cytokine production (Flow Cytometry). The CV extract (SI = 6.89) indicated promising results by showing higher SI than meglumine antimoniate (SI = 3.44) (reference drug). In all analyses, CV presented a protective profile by stimulating the production of Th1 profile cytokines to a larger extent than the reference drugs. Imiquimod showed a high expression for Tbx21, GATA3, RORc and Foxp3 genes, with increased production only of the TNF cytokine. Therefore, the data highlight the natural extract and Imiquimod as strong therapeutic or adjuvant candidates against ATL, owing to modulation of immune response profiles, low toxicity in human cells and toxic action on the parasite.


Subject(s)
Antiprotozoal Agents , Chlorella vulgaris , Leishmania braziliensis , Leishmaniasis, Cutaneous , Humans , Imiquimod/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Cytokines
7.
Nat Prod Res ; : 1-7, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36661179

ABSTRACT

Due to the limitations of Chagas disease therapy, microalgae can be promising in the search of new trypanocidal compounds, since these organisms produce bioactive compounds with large pharmaceutical applications, including antiparasitic effects. In this work, trypanocidal activity of aqueous extract of Tetradesmus obliquus and, for the first time, aqueous extract of Chlorella vulgaris, were evaluated against trypomastigote forms of Trypanosoma cruzi. In addition, cytotoxic activity in Vero cells was evaluated. Our results showed that C. vulgaris and T. obliquus present trypanocidal activity (IC50 = 32.9 µg ml-1 and 36.4 µg ml-1, respectively), however, C. vulgaris did not present cytotoxic effects in Vero cells (CC50 > 600 µg ml-1) and displayed a higher selectivity against trypomastigotes forms of T. cruzi (SI > 18). Thus, microalgae extracts, such as aqueous extract of C. vulgaris, are promising potential candidates for the development of natural antichagasic drugs.

8.
Front Immunol ; 13: 891495, 2022.
Article in English | MEDLINE | ID: mdl-35844611

ABSTRACT

New therapeutic strategies for visceral leishmaniasis (VL) have been studied, and the development of an immunotherapeutic agent that modulates the host's immune response is necessary. The aim of this study was to evaluate in vitro the bioactive extracts of photosynthetic microorganisms (PMs) for their leishmanicidal/leishmanistatic and immunomodulatory potentials. Bioactive extracts from PMs (Arthrospira platensis and Dunaliella tertiolecta) were obtained by sonication. Reference drugs, miltefosine (MTF) and N-methylglucamine antimoniate (SbV), were also evaluated. The selectivity index (SI) of treatments was determined by assays of inhibitory concentration (IC50) in Leishmania infantum cells and cytotoxic concentrations (CC50) in human peripheral blood mononuclear cells by the MTT method. The immune response was evaluated in healthy human cells by the production of cytokines and nitric oxide (NO) and the gene expression of Tbx21, GATA3, RORc, and FOXP3, using four concentrations (CC50, ½ CC50, » CC50, and IC50) for in-vitro stimulation. Based on the data obtained, we observed that the extracts of D. tertiolecta (SI = 4.7) and A. platensis (SI = 3.8) presented better results when compared to SbV (SI = 2.1). When analyzing the immune response results, we identified that the extracts of PMs stimulated the production of cytokines of the Th1 profile more than the reference drugs. The extracts also demonstrated the ability to stimulate NO synthesis. Regarding gene expression, in all concentrations of A. platensis extracts, we found a balance between the Th1/Th2 profile, with the average expression of the Tbx21 gene more than the GATA3 in the highest concentration (CC50). Regarding the extract of D. tertiolecta, we can observe that, in the lowest concentrations, a balance between all the genes was present, with the average expression of the GATA3 gene being lower than the others. The best result was found in the ½ CC50 concentration, stimulating a balanced positive expression between the Th1×Th17×Treg profiles, with a negative expression of GATA3. Thus, PM extracts showed promising results, presenting low toxicity, leishmanicidal/leishmanistatic activity, and induction of the immune response, which could be potential therapeutic candidates for VL.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Visceral , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cytokines/therapeutic use , Humans , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C
9.
Int J Biol Macromol ; 164: 3446-3453, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32882274

ABSTRACT

Artrhospira (Spirulina) platensis produced fibrinolytic enzyme under mixotrophic conditions using corn steep liquor (CSL). The enzyme was extracted, purified by combination of two chromatographic techniques and biochemically characterized. Maximum fibrinolytic production (268.14 U mg-1) was obtained using liquid medium culture composed by 0.2% CLS after 10th day of cultivation. Fibrinolytic activity was higher when extracted by homogenization methods and was purified 32.72-fold with specific activity of 7988 U mg-1. Fibrin zymography showed an active band, indicated acts as a plasmin-like protein with molecular weight of 72 kDa. Fibrinolytic enzyme have optimum pH of 6.0, stable in the range of 6.0 to 10.0 during 24 h and optimum temperature at 40 °C with a stability below 50 °C. Fibrinolytic enzyme is a serine metalloprotease by to be enhanced by Fe2+ and inhibited by PMSF. The enzyme has higher enzymatic activity than most other fibrinolytic enzymes and is stable at temperature and pH human physiological. Overall, the fibrinolytic enzyme from A. platensis has attractive biochemical properties to potential applications in the treatment of thrombosis.


Subject(s)
Culture Media/chemistry , Fibrinolytic Agents/metabolism , Spirulina/enzymology , Biomass , Chemical Precipitation , Enzyme Stability , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/pharmacology , Humans , Hydrogen-Ion Concentration , Photosynthesis , Temperature
10.
Biotechnol Bioeng ; 100(2): 297-305, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18095335

ABSTRACT

This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2(2) plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X(m)), the cell productivity (P(X)), and the yield of biomass on nitrogen (Y(X/N)) were selected as the response variables. The optimum values of X(m) (1,833 mg L(-1)) and Y(X/N) (5.9 g g(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X(m) = 1,771 +/- 41 mg L(-1); Y(X/N) = 5.7 +/- 0.17 g g(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.


Subject(s)
Ammonium Chloride/metabolism , Bioreactors/microbiology , Cell Culture Techniques/methods , Models, Biological , Spirulina/physiology , Spirulina/radiation effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Computer Simulation , Dose-Response Relationship, Radiation , Radiation Dosage , Spirulina/cytology , Time Factors
11.
Article in English | MEDLINE | ID: mdl-29910122

ABSTRACT

A fibrinolytic enzyme was produced by microalga Chlorella vulgaris cultivated in autotrophic and mixotrophic conditions added corn steep liquor, purified by a single chromatographic step, then biochemical characterization and in vitro thrombolytic activity was performed. Maximum cell concentration (1637.45 ±â€¯15 mg L-1) and productivity (181.93 mg L-1 day-1) was obtained in mixotrophic culture using 1% corn steep liquor. Enzyme-extracted microalgal biomass was purified by acetone precipitation and DEAE Sephadex anion exchange chromatography up to 2 fold with recovery of 4.0%. After purification, fibrinolytic activity was 1834.6 U mg-1 and 226.86 mm2 by spectrophotometry and fibrin plate assays, respectively. SDS-PAGE results exhibited a protein band of about 45 kDa and fibrinolytic band was detected by fibrin zymography. Enzyme activity was enhanced in the presence of Fe2+ and inhibited by phenylmethane sulfonyl fluoride (PMSF) and ethylenediamine tetracetic acid (EDTA), which suggest it to be a metal-dependent serine protease. The extract also showed a red blood cell lysis <4% and in vitro thrombolytic activity of 25.6% in 90 min of reaction. These results indicate that the fibrinolytic enzyme from C. vulgaris may have potential applications in the prevention and treatment of thrombosis.


Subject(s)
Chlorella vulgaris/enzymology , Fibrin/metabolism , Fibrinolytic Agents , Plant Proteins , Chromatography, Ion Exchange/methods , Erythrocytes/drug effects , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/pharmacology , Hemolysis/drug effects , Humans , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology
12.
Chemosphere ; 204: 344-350, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29674146

ABSTRACT

Algal wastewater remediation has become attractive for a couple of years now, however the effectiveness of genetic toxicity reducing of some by-products through microalgae are still not well reported. This study aimed to evaluate the growth, nutrients and toxicity removal of Chlorella vulgaris cultivated under autotrophic and mixotrophic conditions in three agro-industrial by-products. Mixotrophic culture using corn steep liquor showed higher cell concentration, specific growth rate, maximum cell productivity and biomass protein content when compared to cheese whey and vinasse. Nutrient removal results showed that C. vulgaris was able to completely remove corn steep liquor nutrients, while in cheese whey and vinasse culture this removal was not as efficient, observing remaining COD. This work evaluated for the first time the corn steep liquor and cheese whey genetic toxicity through Allium cepa seeds assay. These results demonstrate that corn steep liquor toxicity was totally eliminated by C. vulgaris cultivation, and cheese whey and vinasse toxicity were minimized. This study proves that the mixotrophic cultivation of C. vulgaris can increase cellular productivity, as well as it is a suitable and economic alternative to remove the toxicity from agroindustrial by-products.


Subject(s)
Agriculture , Biomass , Chlorella vulgaris/growth & development , Industrial Waste , Waste Disposal, Fluid/methods , Wastewater/chemistry , Chlorella vulgaris/metabolism
13.
Article in English | MEDLINE | ID: mdl-28905008

ABSTRACT

BACKGROUND: Infection following abdominal surgery remains a major factor in morbidity among colorectal cancer (CRC) patients. Probiotic therapy has been suggested to improve the clinical and laboratory outcome of patients undergoing gastrointestinal surgery. The aim of this study was to investigate the efficacy of probiotic lactic acid bacteria in patients with CRC in the pre- and postoperative phases. METHODS: Systematic database searches identified 1,080 related articles. However, only seven articles were selected according to the eligibility criteria for qualitative and quantitative evaluation. RESULTS: Most of the reviewed articles presented satisfactory results related to the prevention of surgical inflammation in patients undergoing resection of CRC when using strains of Lactobacillus genus, predominantly. CONCLUSIONS: Probiotics are suggested to prevent surgical inflammation of CRC, at the same time that the combination of particular microorganisms administered is beneficial to the treatment and surgical recovery.

14.
Bioresour Technol ; 207: 220-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26890797

ABSTRACT

Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70µmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100µmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures.


Subject(s)
Autotrophic Processes/radiation effects , Batch Cell Culture Techniques/methods , Energy Metabolism , Light , Photobioreactors/microbiology , Spirulina/growth & development , Spirulina/radiation effects , Energy Metabolism/radiation effects , Photons , Thermodynamics , Time Factors
15.
3 Biotech ; 6(2): 144, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330216

ABSTRACT

Xylanases activity (XY) from Aspergillus japonicus URM5620 produced by Solid-State Fermentation (SSF) of castor press cake (Ricinus communis) on different conditions of production and extraction by PEG/citrate aqueous two-phase system (ATPS) were investigated. XY production was influenced by substrate amount (5-10 g), initial moisture (15-35 %), pH (4.0-6.0) and temperature (25-35 °C), obtaining the maximum activity of 29,085 ± 1808 U g ds-1 using 5.0 g of substrate with initial moisture of 15 % at 25 °C and pH 6.0, after 120 h of fermentation. The influence of PEG molar mass (1000-8000 g mol-1), phase concentrations (PEG 20.0-24.0 % w/w and sodium citrate 15-20 % w/w) and pH (6.0-8.0) on partition coefficient, purification factor, yield and selectivity of XY were determinate. Enzyme partitioning into the PEG rich phase was favored by M PEG 8000 (g mol-1), C PEG 24 % (w/w), C C 20 % (w/w) and pH 8.0, resulting in partition coefficient of 50.78, activity yield of 268 %, 7.20-fold purification factor and selectivity of 293. A. japonicus URM5620 has a potential role in the development of a bioprocess for the XY production using low-cost media. In addition, the present study proved it is feasible to extract xylanase from SSF by adopting the one step ATPS consisting of PEG/citrate.

16.
Biotechnol J ; 7(11): 1412-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933335

ABSTRACT

Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO(2) . Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO(2) . The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO(2) assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO(2) as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO(2) to mitigate the greenhouse effect while producing high protein content biomass.


Subject(s)
Carbon Dioxide/metabolism , Photobioreactors/microbiology , Spirulina/growth & development , Spirulina/metabolism , Analysis of Variance , Biomass , Photons , Photosynthesis/physiology , Proteins/analysis , Proteins/metabolism , Urea/metabolism
17.
Bioresour Technol ; 102(3): 3215-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21111613

ABSTRACT

Semicontinuous cultures were carried out at different dilution rates (D) and light intensities (I) to determine the maximum productivity of Arthrospira platensis cultivated in helicoidal photobioreactor up to the achievement of pseudo-steady-state conditions. At I=108 µmol photons m(-2) s(-1), the semicontinuous regime ensured the highest values of maximum cell concentration (X(m)=5772±113 mg L(-1)) and productivity (P(XS)=1319±25 mg L(-1) d(-1)) at the lowest (D=0.1 day(-1)) and the highest (D=0.3 day(-1)) dilution rates, respectively. A kinetic model derived from that of Monod was proposed to determine the relationship between the product of light intensity to dilution rate (ID) and the cell productivity, which were shown to exert a combined influence on this parameter. This result put into evidence that pseudo-steady-state conditions could be modified according to circumstances, conveniently varying one or other of the two independent variables.


Subject(s)
Models, Biological , Photobioreactors/microbiology , Spirulina/physiology , Spirulina/radiation effects , Cell Proliferation/radiation effects , Computer Simulation , Light , Radiation Dosage
18.
Acta amaz ; 46(3): 301-310, 2016. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1455305

ABSTRACT

Thrombosis is a pathophysiological disorder caused by accumulation of fibrin in the blood. Fibrinolytic proteases with potent thrombolytic activity have been produced by diverse microbial sources. Considering the microbial biodiversity of the Amazon region, this study aimed at the screening, production and biochemical characterization of a fibrinolytic enzyme produced by Streptomyces sp. isolated from Amazonian lichens. The strain Streptomyces DPUA1576 showed the highest fibrinolytic activity, which was 283 mm2. Three variables at two levels were used to assess their effects on the fibrinolytic production. The parameters studied were agitation (0.28 - 1.12 g), temperature (28 - 36 ºC) and pH (6.0 - 8.0); all of them had significant effects on the fibrinolytic production. The maximum fibrinolytic activity (304 mm2) was observed at 1.12 g, 28 ºC, and pH of 8.0. The crude extract of the fermentation broth was used to assess the biochemical properties of the enzyme. Protease and fibrinolytic activities were stable during 6 h, at a pH ranging from 6.8 to 8.4 and 5.8 to 9.2, respectively. Optimum temperature for protease activity ranged between 35 and 55 °C, while the highest fibrinolytic activity was observed at 45 ºC. Proteolytic activity was inhibited by Cu2+ and Co2+ ions, phenylmethylsulfonyl fluoride (PMSF) and pepstatin A, which suggests that the enzyme is a serine protease. Enzymatic extract cleaved fibrinogen at the subunits Aalpha-chain, Abeta-chain, and gama-chain. The results indicated that Streptomyces sp. DPUA 1576 produces enzymes with fibrinolytic and fibrinogenolytic activity, enzymes with an important application in the pharmaceutical industry.


A trombose é uma doença patofisiológica causada pelo acúmulo de fibrina no sangue. Proteases fibrinolíticas com potente atividade trombolítica são produzidas por diversas fontes microbianas. Considerando a biodiversidade microbiana da região amazônica, o presente estudo teve como objetivo a seleção, produção e caracterização bioquímica da enzima fibrinolítica de Streptomyces sp. isolado de líquens da Amazônia. Streptomyces DPUA1576 foi a melhor produtora com atividade fibrinolítica de 283 mm2. Três variáveis em dois níveis foram utilizadas para determinar as variáveis mais relevantes na produção da enzima fibrinolítica (FA). Os parâmetros estudados foram agitação (0.28 - 1.12 g), temperatura (28 - 36 ºC) e pH (6.0 - 8.0) e todos obtiveram efeitos significativos na produção fibrinolítica. A maior atividade fibrinolítica (304 mm2) foi obtida a 1.12 g, 28 ºC e pH 8.0. O extrato bruto da fermentação foi usado para determinar as propriedades bioquímicas da enzima. Atividades proteásica e fibrinolítica foram estáveis durante 6 horas no intervalo de pH entre 6.8 - 8.4 e 5.8 - 9.2, respectivamente. Temperatura ótima para a atividade proteásica foi entre 35 - 55 °C, enquanto que para a atividade fibrinolítica foi de 45 ºC. Atividade proteásica foi inibida por íons Cu2+ e Co2+, fluoreto de fenilmetilsulfonil e pepstatina A, na qual sugere que a enzima é uma serino-protease. O extrato enzimático degradou o fibrinogênio nas subunidades Aalfa, Abeta e gama . Os resultados apresentados indicam que Streptomyces sp. DPUA 1576 produz enzimas com atividade fibrinolítica e fibrinogenolítica, enzimas com aplicações importantes na indústria farmacêutica.


Subject(s)
Fibrinogen , Fibrinolytic Agents/analysis , Protease Inhibitors , Streptomyces/chemistry , Actinobacteria , Serine Proteases
19.
Biotechnol Bioeng ; 96(4): 702-11, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-16988991

ABSTRACT

Arthrospira platensis was cultivated photoautotrophically at 6.0 klux light intensity in 5.0-L open tanks, using a mineral medium containing urea as nitrogen source. Fed-batch experiments were performed at constant flowrate. A central composite factorial design combined to response surface methodology (RSM) was utilized to determine the relationship between the selected response variables (cell concentration after 10 days, X(m), cell productivity, P(X), and nitrogen-to-cell conversion factor, Y(X/N)) and codified values of the independent variables (pH, temperature, T, and urea flowrate, K). By applying the quadratic regression analysis, the equations describing the behaviors of these responses as simultaneous functions of the selected independent variables were determined, and the conditions for X(m) and P(X) optimization were estimated (pH 9.5, T = 29 degrees C, and K = 0.551 mM/day). The experimental data obtained under these conditions (X(m) = 749 mg/L; P(X) = 69.9 mg/L.day) were very close to the estimated ones (X(m) = 721 mg/L; P(X) = 67.1 mg/L.day). Additional cultivations were carried out under the above best conditions of pH control and urea flowrate at variable temperature. Consistently with the results of RSM, the best growth temperature was 29 degrees C. The maximum specific growth rates at different temperatures were used to estimate the thermodynamic parameters of growth (DeltaH* = 59.3 kJ/mol; DeltaS* = -0.147 kJ/mol.K; DeltaG* = 103 kJ/mol) and its thermal inactivation (DeltaH(D) (o) = 72.0 kJ/mol; DeltaS(D) (o) = 0.144 kJ/mol.K; DeltaG(D) (o) = 29.1 kJ/mol).


Subject(s)
Bioreactors , Cyanobacteria/metabolism , Thermodynamics , Urea/metabolism , Biomass , Cyanobacteria/growth & development , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Temperature
20.
Braz. arch. biol. technol ; 49(4): 547-555, July 2006. tab, graf
Article in English | LILACS | ID: lil-448920

ABSTRACT

Studies were carried out on the partition of amylase from Bacillus subtilis in a minimal medium at 37 °C and 110 rpm. Enzyme recovery was carried out in aqueous two-phase system PEG-Phosphate salt were carried out. The best purification factor (5.4) was obtained in system PEG 1000 (16.7 percent w/w) with potassium phosphate (14.8 percent w/w), at pH 6.0, resulting in a recovery of 45.2 percent activity enzymatic in the salt-rich phase.


Enzimas amilolíticas têm sido amplamente investigadas com a finalidade de melhorar os processos industriais para a degradação do amido. Foi determinado que a extração da enzima em sistema bifásico aquosos é um método aplicável para separação e purificação de biomoléculas em misturas. Vários sistemas compostos de soluções aquosas de polietilenoglicol e fosfato foram avaliados. Estudos de produção em meio mínimo suplementado, à 37°C, com uma velocidade de agitação de 110rpm e recuperação da amilase a partir do Bacillus subtilis em sistema bifásico aquoso PEG-fosfato foram avaliados. O melhor fator de purificação (5.4) foi obtido no sistema PEG 1000 (16.7 por cento w/w) com fosfato de potássio (14.8 por cento w/w), a pH 6.0, resultando na recuperação da atividade enzimática de 45.2 por cento na fase rica em sal.

SELECTION OF CITATIONS
SEARCH DETAIL