Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 296: 100449, 2021.
Article in English | MEDLINE | ID: mdl-33617879

ABSTRACT

Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.


Subject(s)
Curcumin/pharmacology , Drug Design , Epithelial Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/antagonists & inhibitors , Animals , Cell Line, Tumor , Cloning, Molecular , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Drug Stability , Epithelial Cells/enzymology , Epithelial Cells/pathology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HT29 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-hck/chemistry , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/metabolism , RAW 264.7 Cells , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , src-Family Kinases/genetics , src-Family Kinases/metabolism , Dyrk Kinases
2.
J Cell Sci ; 133(24)2020 12 24.
Article in English | MEDLINE | ID: mdl-33268466

ABSTRACT

The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.


Subject(s)
Cation Transport Proteins , Hepatolenticular Degeneration , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cation Transport Proteins/genetics , Copper/metabolism , Copper-Transporting ATPases/genetics , Endosomes/metabolism , Hepatolenticular Degeneration/genetics , Humans
3.
Inorg Chem ; 60(7): 4744-4754, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33760599

ABSTRACT

Sulfonamides have a broad range of therapeutic applications, which include the inhibition of various isoforms of carbonic anhydrases (CAs). Among the various CA isoforms, CA IX is overexpressed in tumors and regulates the pH of the tumor microenvironment. Herein we present five new ruthenium(II) p-cymene complexes (1-5) of Schiff base ligands (L1-L4) of 4-(2-aminoethyl)benzenesulfonamide by varying the aldehyde to enhance the selective cytotoxicity toward cancer cells. All of the complexes are stable to aquation for the observed period of 24 h except 1, which aquated within 1 h, but the monoaquated species is stable for 24 h. The two imidazole derivatives, 1 and 2, are cytotoxic to the cancer cells MDA-MB-231 and MIA PaCa-2 but not to the noncancerous cells CHO and MDCK. The enhanced toxicity in hypoxia against MDA-MB-231 may be due to the greater expression of CA IX in hypoxia, as per the immunofluorescence data. The most cytotoxic complexes, 1 and 2, are lipophilic, whereas 3-5 show high hydrophilicity and are not cytotoxic up to 200 µM. Complexes 1 and 2 also show a higher cellular accumulation in MDA-MB-231 than the nontoxic yet solution-stable complex 5. The cytotoxic complexes bind with the model nucleobase 9-ethylguanine but have slow reactivity toward cellular tripeptide glutathione. Both 1 and 2 induce apoptosis by depolarizing the mitochondrial membrane potential and arrest the cell cycle in the SubG1 phase.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Cymenes/pharmacology , Imidazoles/pharmacology , Ruthenium/pharmacology , Sulfonamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Cymenes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Ruthenium/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Structure-Activity Relationship , Sulfonamides/chemistry , Tumor Cells, Cultured
4.
Inorg Chem ; 60(16): 12172-12185, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34346215

ABSTRACT

Morpholine motif is an important pharmacophore and, depending on the molecular design, may localize in cellular acidic vesicles. To understand the importance of the presence of pendant morpholine in a metal complex, six bidentate N,O-donor ligands with or without a pendant morpholine unit and their corresponding ruthenium(II) p-cymene complexes (1-6) are synthesized, purified, and structurally characterized by various analytical methods including X-ray diffraction. Complexes 2-4 crystallized in the P21/c space group, whereas 5 and 6 crystallized in the P1̅ space group. The solution stability studies using 1H NMR support instantaneous hydrolysis of the native complexes to form monoaquated species in a solution of 3:7 (v/v) dimethyl sulfoxide-d6 and 20 mM phosphate buffer (pH* 7.4, containing 4 mM NaCl). The monoaquated complexes are stable for at least up to 24 h. The complexes display excellent in vitro antiproliferative activity (IC50 ca. 1-14 µM) in various cancer cell lines, viz., MDA-MB-231, MiaPaCa2, and Hep-G2. The presence of the pendant morpholine does not improve the dose efficacy, but rather, with 2-[[(2,6-dimethylphenyl)imino]methyl]phenol (HL1) and its pendant morpholine analogue (HL3) giving complexes 1 and 3, respectively, the antiproliferative activity was poorer with 3. MDA-MB-231 cells treated with the complexes show that the acidic vesicles remain acidic, but the population of acidic vesicles increases or decreases with time of exposure, as observed from the dispersed red puncta, depending on the complex used. The presence of the 2,6-disubstituted aniline and the naphthyl group seems to improve the antiproliferative dose. The complex treated MDA-MB-231 cells show that cathepsin D, which is otherwise present in the cytosolic lysosomes, translocates to the nucleus as a result of exposure to the complexes. Irrespective of the presence of a morpholine motif, the complexes do not activate caspase-3 to induce apoptosis and seem to favor the necrotic pathway of cell killing.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Cymenes/chemistry , Morpholines/chemistry , Ruthenium/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Coordination Complexes/chemistry , Humans , Models, Molecular , Molecular Conformation
5.
Inorg Chem ; 60(7): 4342-4346, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33711231

ABSTRACT

Platinum(IV) complexes of orotic acid selectively target liver cancer cells displaying enhanced activity and higher uptake in Hep G2. The comparatively higher expression of Organic Anion Transporter 2 (OAT2) in Hep G2 and decrease in toxicity in the presence of OAT2 inhibitor suggest its involvement in the uptake of the complexes. They are resistant to sequestration by the copper transporter ATP7B, unlike cisplatin and oxaliplatin.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Hypoxia/drug effects , Liver Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , Orotic Acid/pharmacology , Prodrugs/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Structure , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Orotic Acid/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship
6.
Inorg Chem ; 60(5): 3418-3430, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33554592

ABSTRACT

Platinum-based complexes are one of the most successful chemotherapeutic agents having a significant ground in cancer chemotherapy despite their side effects. During the past few decades, Ru(II) complexes have been emerging as efficient alternatives owing to their promising activities against platinum-resistant cancer. The pathway of action, lipophilicity, and cytotoxicity of a Pt or Ru complex may be tuned by varying the attached ligands, the coordination mode, and the leaving group. In this work, we report a family of Pt(II) and Ru(II) complexes (1-5) of three N,O and N,N donor-based trimethoxyanilines containing Schiff bases with the general formula [PtII(L)(DMSO)Cl], [RuII(L)(p-cymene)Cl], [RuII(L)(p-cymene)Cl]+, and [PtII(L)Cl2]. All of the complexes are characterized by different analytical techniques. 1H NMR and electrospray ionization mass spectrometry (ESI-MS) data suggest that the N,O-coordinated Pt(II) complexes undergo slower aquation compared to the Ru(II) analogues. The change of the coordination mode to N,N causes the Ru complexes to be more inert to aquation. The N,O-coordinating complexes show superiority over N,N-coordinating complexes by displaying excellent in vitro antiproliferative activity against different aggressive cancer cells, viz., triple-negative human metastatic breast adenocarcinoma MDA-MB-231, human pancreatic carcinoma MIA PaCa-2, and hepatocellular carcinoma Hep G2. In vitro cytotoxicity studies suggest that Pt(II) complexes are more effective than their corresponding Ru(II) analogues, and the most cytotoxic complex 3 is 10-15 times more toxic than the clinical drugs cisplatin and oxaliplatin against MDA-MB-231 cells. Cellular studies show that all of the N,O-coordinated complexes (1-3) initiate disruption of the microtubule network in MDA-MB-231 cells in a dose-dependent manner within 6 h of incubation and finally lead to the arrest of the cell cycle in the G2/M phase and render apoptotic cell death. The disruption of the microtubule network affects the agility of the cytoskeleton rendering inhibition of tyrosine phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a key step in angiogenesis. Complexes 1 and 2 inhibit VEGFR2 phosphorylation in a dose-dependent fashion. Among the Pt(II) and Ru(II) complexes, the former displays higher cytotoxicity, a stronger effect on the cytoskeleton, better VEGFR2 inhibition, and strong interaction with the model nucleobase 9-ethylguanine (9-EtG).


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Microtubules/metabolism , Schiff Bases/pharmacology , Tubulin Modulators/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Cytoskeleton/drug effects , Drug Screening Assays, Antitumor , Humans , Phosphorylation/drug effects , Platinum/chemistry , Ruthenium/chemistry , Schiff Bases/chemical synthesis , Tubulin Modulators/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL