Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Biol Lett ; 9(1): 20120958, 2013 Feb 23.
Article in English | MEDLINE | ID: mdl-23221878

ABSTRACT

One of the most mysterious aspects of insect clock mechanisms is that some insects, including Hymenoptera and Tribolium, only express a vertebrate-type cryptochrome (cry2). It is unknown whether or not cry2 underwent adaptive evolution in these insects. In the present study, we cloned and sequenced the full-length cry2 from a fig pollinator species, Ceratosolen solmsi (Hymenoptera: Chalcidoidea: Agaonidae), and examined the molecular evolution and daily expression of this gene. Our results suggest that cry2 underwent positive selection in the branch leading to hymenopteran insects. The function of CRY2 might have been fixed since undergoing natural selection in the ancestor of Hymenoptera. Male pollinators showed stronger rhythmicity in the host figs, which reflect an adaptation to their life cycles.


Subject(s)
Cryptochromes/genetics , Cryptochromes/metabolism , Evolution, Molecular , Hymenoptera/genetics , Hymenoptera/metabolism , Animals , China , Circadian Rhythm , Female , Ficus , Gene Expression Regulation , Male , Molecular Sequence Data , Phylogeny , Pollination , Polymerase Chain Reaction , Sequence Analysis, DNA
2.
PLoS One ; 8(1): e53907, 2013.
Article in English | MEDLINE | ID: mdl-23342036

ABSTRACT

Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2) genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV) gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators.


Subject(s)
Evolution, Molecular , Ficus/physiology , Gene Expression Regulation , Hymenoptera/genetics , Insect Proteins/genetics , Opsins/genetics , Pollination , Animals , Circadian Rhythm/genetics , Circadian Rhythm/radiation effects , Female , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Hymenoptera/physiology , Hymenoptera/radiation effects , Light , Male , Phylogeny , Sex Characteristics , Time Factors
3.
Genome Biol ; 14(12): R141, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24359812

ABSTRACT

BACKGROUND: Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question. RESULTS: The genome size of the fig wasp C. solmsi is typical of insects, but has undergone dramatic reductions of gene families involved in environmental sensing and detoxification. The streamlined chemosensory ability reflects the overwhelming importance of females finding trees of their only host species, Ficus hispida, during their fleeting adult lives. Despite long-distance dispersal, little need exists for detoxification or environmental protection because fig wasps spend nearly all of their lives inside a largely benign host. Analyses of transcriptomes in females and males at four key life stages reveal that the extreme anatomical sexual dimorphism of fig wasps may result from a strong bias in sex-differential gene expression. CONCLUSIONS: Our comparison of the C. solmsi genome with other insects provides new insights into the evolution of obligate mutualism. The draft genome of the fig wasp, and transcriptomic comparisons between both sexes at four different life stages, provide insights into the molecular basis for the extreme anatomical sexual dimorphism of this species.


Subject(s)
Ficus/parasitology , Genome, Insect , Sequence Analysis, DNA/methods , Wasps/embryology , Wasps/genetics , Animals , Evolution, Molecular , Female , Ficus/physiology , Gene Expression Regulation, Developmental , Genome Size , Male , Phylogeny , Sex Characteristics , Symbiosis , Wasps/classification , Wasps/physiology
4.
PLoS One ; 7(11): e48882, 2012.
Article in English | MEDLINE | ID: mdl-23145008

ABSTRACT

Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium (inflorescence) habitat for the lives of a complex assemblage of Chalcidoid insects. These diverse fig wasp species have intimate ecological relationships within the closed world of the fig syconia. Previous surveys of Wolbachia, maternally inherited endosymbiotic bacteria that infect vast numbers of arthropod hosts, showed that fig wasps have some of the highest known incidences of Wolbachia amongst all insects. We ask whether the evolutionary patterns of Wolbachia sequences in this closed syconium community are different from those in the outside world. In the present study, we sampled all 17 fig wasp species living on Ficus benjamina, covering 4 families, 6 subfamilies, and 8 genera of wasps. We made a thorough survey of Wolbachia infection patterns and studied evolutionary patterns in wsp (Wolbachia Surface Protein) sequences. We find evidence for high infection incidences, frequent recombination between Wolbachia strains, and considerable horizontal transfer, suggesting rapid evolution of Wolbachia sequences within the syconium community. Though the fig wasps have relatively limited contact with outside world, Wolbachia may be introduced to the syconium community via horizontal transmission by fig wasps species that have winged males and visit the syconia earlier.


Subject(s)
Wasps/microbiology , Wolbachia/genetics , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Female , Ficus , Genotype , Male , Phylogeny , Population Dynamics , Sequence Analysis, DNA , Symbiosis
5.
Mol Ecol Resour ; 12(4): 598-606, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22372851

ABSTRACT

Philotrypesis, a major component of the fig wasp community (Hymenoptera: Pteromalidae), is a model taxon for studying male fighting and mating behaviour. Its extreme sexual dimorphism and male polymorphism render species identification uncertain and in-depth research on its ecology, behaviour and other evolutionary topics challenging. The fig wasps' enclosed habitat within the syconia makes their mating behaviour inaccessible, to the extent of matching conspecific females and males. In this study, we combine morphological and molecular analyses to identify species of Philotrypesis sampled from south China and to associate their extraordinarily dimorphic genders and labile male morphologies. Morphological evaluations of females identify 22 species and 28 male morphs. The mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 2 data detect 21 species using females, and 15 species among the males. Most of the males match the species as delimited by females. Both markers reveal cryptic species in P. quadrisetosa on Ficus vasculosa. Most species of wasps live on one species of fig but three species co-occur in two hosts (F. microcarpa and F. benjamina), which indicates host switching.


Subject(s)
Host Specificity/genetics , Sex Characteristics , Sex Determination Processes/genetics , Wasps/classification , Wasps/genetics , Animals , Base Sequence , DNA, Intergenic/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Female , Genetic Variation , Male , Mitochondria/genetics , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL