Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Journal subject
Affiliation country
Publication year range
1.
Plant Physiol ; 183(3): 869-882, 2020 07.
Article in English | MEDLINE | ID: mdl-32409479

ABSTRACT

Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Hot Temperature , Phytochrome/metabolism , Plastids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Terpenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant
2.
Plant Physiol ; 181(3): 1360-1370, 2019 11.
Article in English | MEDLINE | ID: mdl-31519788

ABSTRACT

Plant development is highly dependent on the ability to perceive and cope with environmental changes. In this context, PIF proteins are key players in the cellular hub controlling responses to fluctuating light and temperature conditions. Reports in various plant species show that manipulation of the PIF4 level affects important agronomical traits. In tomato (Solanum lycopersicum), SlPIF1a and SlPIF3 regulate fruit nutraceutical composition. However, the wider role of this protein family, and the potential of their manipulation for the improvement of other traits, has not been explored. Here we report the effects of constitutive silencing of tomato SlPIF4 on whole-plant physiology and development. Ripening anticipation and higher carotenoid levels observed in SlPIF4-silenced fruits revealed a redundant role of SlPIF4 in the accumulation of nutraceutical compounds. Furthermore, silencing triggered a significant reduction in plant size, flowering, fruit yield, and fruit size. This phenotype was most likely caused by reduced auxin levels and altered carbon partitioning. Impaired thermomorphogenesis and delayed leaf senescence were also observed in silenced plants, highlighting the functional conservation of PIF4 homologs in angiosperms. Overall, this work improves our understanding of the role of PIF proteins-and light signaling-in metabolic and developmental processes that affect yield and composition of fleshy fruits.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Fruit/growth & development , Fruit/metabolism , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Indoleacetic Acids/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/genetics
3.
Plant Physiol ; 176(4): 2904-2916, 2018 04.
Article in English | MEDLINE | ID: mdl-29500181

ABSTRACT

The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER1, a phosphatidylethanolamine-binding protein with antiflorigenic activity in Arabidopsis (Arabidopsis thaliana). A spontaneous loss-of-function mutation (sp) has been bred into several industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature, and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses, such as gravitropic curvature and elongation of excised hypocotyl segments. We also demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp mutants. Furthermore, diageotropica, a mutation in a gene encoding a cyclophilin A protein, appears to confer epistatic effects with sp Our results indicate that SP affects the tomato growth habit at least in part by influencing auxin transport and responsiveness. These findings suggest potential novel targets that could be manipulated for controlling plant growth habit and improving productivity.


Subject(s)
Cyclophilin A/metabolism , Fruit/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Biological Transport , Cyclophilin A/genetics , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Mutation , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics
4.
J Exp Bot ; 69(15): 3573-3586, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29912373

ABSTRACT

Light signaling has long been reported to influence fruit biology, although the regulatory impact of fruit-localized photoreceptors on fruit development and metabolism remains unclear. Studies performed in phytochrome (PHY)-deficient tomato (Solanum lycopersicum) mutants suggest that SlPHYA, SlPHYB2, and to a lesser extent SlPHYB1 influence fruit development and ripening. By employing fruit-specific RNAi-mediated silencing of SlPHY genes, we demonstrated that fruit-localized SlPHYA and SlPHYB2 play contrasting roles in regulating plastid biogenesis and maturation in tomato. Our data revealed that fruit-localized SlPHYA, rather than SlPHYB1 or SlPHYB2, positively influences tomato plastid differentiation and division machinery via changes in both light and cytokinin signaling-related gene expression. Fruit-localized SlPHYA and SlPHYB2 were also shown to modulate sugar metabolism in early developing fruits via overlapping, yet distinct, mechanisms involving the co-ordinated transcriptional regulation of genes related to sink strength and starch biosynthesis. Fruit-specific SlPHY silencing also drastically altered the transcriptional profile of genes encoding light-repressor proteins and carotenoid-biosynthesis regulators, leading to reduced carotenoid biosynthesis during fruit ripening. Together, our data reveal the existence of an intricate PHY-hormonal interplay during fruit development and ripening, and provide conclusive evidence on the regulation of tomato quality by fruit-localized phytochromes.


Subject(s)
Carotenoids/metabolism , Light Signal Transduction/radiation effects , Phytochrome/metabolism , Solanum lycopersicum/physiology , Starch/metabolism , Cytokinins/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/radiation effects , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Plant Growth Regulators/metabolism , Plastids/metabolism
5.
Plant Physiol ; 170(4): 2278-94, 2016 04.
Article in English | MEDLINE | ID: mdl-26829981

ABSTRACT

The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.


Subject(s)
Ethylenes/metabolism , Etiolation , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Plastids/metabolism , Seedlings/metabolism , Solanum lycopersicum/physiology , Biliverdine/analogs & derivatives , Biliverdine/metabolism , Cell Differentiation/genetics , Cell Differentiation/radiation effects , Chlorophyll/metabolism , Cotyledon/metabolism , Cotyledon/radiation effects , Cotyledon/ultrastructure , Down-Regulation/genetics , Down-Regulation/radiation effects , Fumigation , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Light , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/radiation effects , Morphogenesis/radiation effects , Mutation/genetics , Nitrate Reductase/metabolism , Plastids/radiation effects , Plastids/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/radiation effects
6.
Plant Sci ; 349: 112243, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39233143

ABSTRACT

Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.


Subject(s)
Abscisic Acid , Ethylenes , Fruit , Plant Growth Regulators , Stress, Physiological , Ethylenes/metabolism , Abscisic Acid/metabolism , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Fruit/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Droughts
7.
Front Plant Sci ; 13: 870974, 2022.
Article in English | MEDLINE | ID: mdl-35574124

ABSTRACT

Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.

8.
Front Plant Sci ; 9: 1370, 2018.
Article in English | MEDLINE | ID: mdl-30279694

ABSTRACT

Light signaling and plant hormones, particularly ethylene and auxins, have been identified as important regulators of carotenoid biosynthesis during tomato fruit ripening. However, whether and how the light and hormonal signaling cascades crosstalk to control this metabolic route remain poorly elucidated. Here, the potential involvement of ethylene and auxins in the light-mediated regulation of tomato fruit carotenogenesis was investigated by comparing the impacts of light treatments and the light-hyperresponsive high pigment-2 (hp2) mutation on both carotenoid synthesis and hormonal signaling. Under either light or dark conditions, the overaccumulation of carotenoids in hp2 ripening fruits was associated with disturbed ethylene production, increased expression of genes encoding master regulators of ripening and higher ethylene sensitivity and signaling output. The increased ethylene sensitivity observed in hp2 fruits was associated with the differential expression of genes encoding ethylene receptors and downstream signaling transduction elements, including the downregulation of the transcription factor ETHYLENE RESPONSE FACTOR.E4, a repressor of carotenoid synthesis. Accordingly, treatments with exogenous ethylene promoted carotenoid biosynthetic genes more intensively in hp2 than in wild-type fruits. Moreover, the loss of HP2 function drastically altered auxin signaling in tomato fruits, resulting in higher activation of the auxin-responsive promoter DR5, severe down-regulation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes and altered accumulation of AUXIN RESPONSE FACTOR (ARF) transcripts. Both tomato ARF2 paralogues (Sl-ARF2a and SlARF2b) were up-regulated in hp2 fruits, which agrees with the promotive roles played by these ARFs in tomato fruit ripening and carotenoid biosynthesis. Among the genes differentially expressed in hp2 fruits, the additive effect of light treatment and loss of HP2 function was particularly evident for those encoding carotenoid biosynthetic enzymes, ethylene-related transcription factors, Aux/IAAs and ARFs. Altogether, the data uncover the involvement of ethylene and auxin as part of the light signaling cascades controlling tomato fruit metabolism and provide a new link between light signaling, plant hormone sensitivity and carotenoid metabolism in ripening fruits.

9.
Sci Rep ; 7(1): 7822, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798491

ABSTRACT

Phytochomes and plant hormones have been emerging as important regulators of fleshy fruit biology and quality traits; however, the relevance of phytochrome-hormonal signaling crosstalk in controlling fruit development and metabolism remains elusive. Here, we show that the deficiency in phytochrome chromophore phytochromobilin (PΦB) biosynthesis inhibits sugar accumulation in tomato (Solanum lycopersicum) fruits by transcriptionally downregulating sink- and starch biosynthesis-related enzymes, such as cell-wall invertases, sucrose transporters and ADP-glucose pyrophosphorylases. PΦB deficiency was also shown to repress fruit chloroplast biogenesis, which implicates more limited production of photoassimilates via fruit photosynthesis. Genetic and physiological data revealed the involvement of auxins and cytokinins in mediating the negative impact of PΦB deficiency on fruit sink strength and chloroplast formation. PΦB deficiency was shown to transcriptionally repress type-A TOMATO RESPONSE REGULATORs and AUXIN RESPONSE FACTORs both in pericarp and columella, suggesting active phytochrome-hormonal signaling crosstalk in these tissues. Data also revealed that PΦB deficiency influences fruit ripening by delaying the climacteric rise in ethylene production and signaling. Altogether, the data uncover the impact of phytochromobilin deficiency in fine-tuning sugar metabolism, chloroplast formation and the timing of fruit ripening and also reveal a link between auxins, cytokinins and phytochromes in regulating sugar import and accumulation in fruits.


Subject(s)
Biliverdine/analogs & derivatives , Metabolic Networks and Pathways , Solanum lycopersicum/genetics , Sugars/metabolism , Biliverdine/deficiency , Chloroplasts/metabolism , Cytokinins/metabolism , Down-Regulation , Ethylenes/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Transcription, Genetic
10.
Front Plant Sci ; 5: 665, 2014.
Article in English | MEDLINE | ID: mdl-25520728

ABSTRACT

Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light-ethylene interplay in higher plants will also be compiled and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL