Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hum Genomics ; 18(1): 81, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030631

ABSTRACT

BACKGROUND: Maternal genetic risk of type 2 diabetes (T2D) has been associated with fetal growth, but the influence of genetic ancestry is not yet fully understood. We aimed to investigate the influence of genetic distance (GD) and genetic ancestry proportion (GAP) on the association of maternal genetic risk score of T2D (GRST2D) with fetal weight and birthweight. METHODS: Multi-ancestral pregnant women (n = 1,837) from the NICHD Fetal Growth Studies - Singletons cohort were included in the current analyses. Fetal weight (in grams, g) was estimated from ultrasound measurements of fetal biometry, and birthweight (g) was measured at delivery. GRST2D was calculated using T2D-associated variants identified in the latest trans-ancestral genome-wide association study and was categorized into quartiles. GD and GAP were estimated using genotype data of four reference populations. GD was categorized into closest, middle, and farthest tertiles, and GAP was categorized as highest, medium, and lowest. Linear regression analyses were performed to test the association of GRST2D with fetal weight and birthweight, adjusted for covariates, in each GD and GAP category. RESULTS: Among women with the closest GD from African and Amerindigenous ancestries, the fourth and third GRST2D quartile was significantly associated with 5.18 to 7.48 g (weeks 17-20) and 6.83 to 25.44 g (weeks 19-27) larger fetal weight compared to the first quartile, respectively. Among women with middle GD from European ancestry, the fourth GRST2D quartile was significantly associated with 5.73 to 21.21 g (weeks 18-26) larger fetal weight. Furthermore, among women with middle GD from European and African ancestries, the fourth and second GRST2D quartiles were significantly associated with 117.04 g (95% CI = 23.88-210.20, p = 0.014) and 95.05 g (95% CI = 4.73-185.36, p = 0.039) larger birthweight compared to the first quartile, respectively. The absence of significant association among women with the closest GD from East Asian ancestry was complemented by a positive significant association among women with the highest East Asian GAP. CONCLUSIONS: The association between maternal GRST2D and fetal growth began in early-second trimester and was influenced by GD and GAP. The results suggest the use of genetic GD and GAP could improve the generalizability of GRS.


Subject(s)
Birth Weight , Diabetes Mellitus, Type 2 , Fetal Development , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Female , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Pregnancy , Fetal Development/genetics , Birth Weight/genetics , Adult , Fetal Weight/genetics , Risk Factors , Polymorphism, Single Nucleotide/genetics , Genetic Risk Score
2.
BMC Med ; 21(1): 12, 2023 01 08.
Article in English | MEDLINE | ID: mdl-36617561

ABSTRACT

BACKGROUND: Poor social support during pregnancy has been linked to inflammation and adverse pregnancy and childhood health outcomes. Placental epigenetic alterations may underlie these links but are still unknown in humans. METHODS: In a cohort of low-risk pregnant women (n = 301) from diverse ethnic backgrounds, social support was measured using the ENRICHD Social Support Inventory (ESSI) during the first trimester. Placental samples collected at delivery were analyzed for DNA methylation and gene expression using Illumina 450K Beadchip Array and RNA-seq, respectively. We examined association between maternal prenatal social support and DNA methylation in placenta. Associated cytosine-(phosphate)-guanine sites (CpGs) were further assessed for correlation with nearby gene expression in placenta. RESULTS: The mean age (SD) of the women was 27.7 (5.3) years. The median (interquartile range) of ESSI scores was 24 (22-25). Prenatal social support was significantly associated with methylation level at seven CpGs (PFDR < 0.05). The methylation levels at two of the seven CpGs correlated with placental expression of VGF and ILVBL (PFDR < 0.05), genes known to be involved in neurodevelopment and energy metabolism. The genes annotated with the top 100 CpGs were enriched for pathways related to fetal growth, coagulation system, energy metabolism, and neurodevelopment. Sex-stratified analysis identified additional significant associations at nine CpGs in male-bearing pregnancies and 35 CpGs in female-bearing pregnancies. CONCLUSIONS: The findings suggest that prenatal social support is linked to placental DNA methylation changes in a low-stress setting, including fetal sex-dependent epigenetic changes. Given the relevance of some of these changes in fetal neurodevelopmental outcomes, the findings signal important methylation targets for future research on molecular mechanisms of effect of the broader social environment on pregnancy and fetal outcomes. TRIAL REGISTRATION: NCT00912132 ( ClinicalTrials.gov ).


Subject(s)
Epigenome , Placenta , Adult , Child , Female , Humans , Male , Pregnancy , DNA Methylation/genetics , Epigenesis, Genetic , Placenta/metabolism , Social Support
3.
Genet Epidemiol ; 43(4): 356-364, 2019 06.
Article in English | MEDLINE | ID: mdl-30657194

ABSTRACT

When interpreting genome-wide association peaks, it is common to annotate each peak by searching for genes with plausible relationships to the trait. However, "all that glitters is not gold"-one might interpret apparent patterns in the data as plausible even when the peak is a false positive. Accordingly, we sought to see how human annotators interpreted association results containing a mixture of peaks from both the original trait and a genetically uncorrelated "synthetic" trait. Two of us prepared a mix of original and synthetic peaks of three significance categories from five different scans along with relevant literature search results and then we all annotated these regions. Three annotators also scored the strength of evidence connecting each peak to the scanned trait and the likelihood of further studying that region. While annotators found original peaks to have stronger evidence (p Bonferroni = 0.017) and higher likelihood of further study ( p Bonferroni = 0.006) than synthetic peaks, annotators often made convincing connections between the synthetic peaks and the original trait, finding these connections 55% of the time. These results show that it is not difficult for annotators to make convincing connections between synthetic association signals and genes found in those regions.


Subject(s)
Data Curation , Data Interpretation, Statistical , False Positive Reactions , Genome-Wide Association Study/statistics & numerical data , Data Curation/methods , Data Curation/standards , Data Curation/statistics & numerical data , Deception , Genome-Wide Association Study/standards , Humans , Phenotype , Polymorphism, Single Nucleotide
4.
Aging Cell ; : e14194, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808605

ABSTRACT

Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.

5.
Nat Commun ; 12(1): 3416, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099706

ABSTRACT

APOE and Trem2 are major genetic risk factors for Alzheimer's disease (AD), but how they affect microglia response to Aß remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human APOEε3/3 and APOEε4/4 AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aß, facilitate Aß uptake, and ameliorate Aß effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aß uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aß mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.


Subject(s)
Alzheimer Disease/pathology , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Brain/pathology , Microglia/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein E3/administration & dosage , Apolipoprotein E3/genetics , Apolipoprotein E4/administration & dosage , Apolipoprotein E4/genetics , Brain/cytology , Disease Models, Animal , Female , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Mutation , Phospholipids/metabolism , Presenilin-1/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
6.
Mol Neurodegener ; 15(1): 41, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703241

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is a neurodegenerative disorder influenced by aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction that can modulate AD pathology. METHODS: The aim of this study was to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial response, and brain transcriptome. RESULTS: In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased plaque growth that negatively correlated to the diminished microglia barrier, an effect most pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates. Gene expression analysis identified Trem2 signature - a cluster of highly connected immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes including APP and WT littermates. Furthermore, we identified sets of genes that were affected in TREM2- and APOE isoform-dependent manner. Among them were Clec7a and Csf1r upregulated in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level in APP/E3 versus their APP/E4 counterparts. CONCLUSIONS: Our data demonstrate that lack of Trem2 differentially impacts the phenotype and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably reflect the different effect of APOE isoforms on amyloid deposition.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Membrane Glycoproteins/deficiency , Receptors, Immunologic/deficiency , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/pathology
7.
Alzheimers Res Ther ; 11(1): 113, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888770

ABSTRACT

BACKGROUND: The application of advanced sequencing technologies and improved mass-spectrometry platforms revealed significant changes in gene expression and lipids in Alzheimer's disease (AD) brain. The results so far have prompted further research using "multi-omics" approaches. These approaches become particularly relevant, considering the inheritance of APOEε4 allele as a major genetic risk factor of AD, disease protective effect of APOEε2 allele, and a major role of APOE in brain lipid metabolism. METHODS: Postmortem brain samples from inferior parietal lobule genotyped as APOEε2/c (APOEε2/carriers), APOEε3/3, and APOEε4/c (APOEε4/carriers), age- and gender-matched, were used to reveal APOE allele-associated changes in transcriptomes and lipidomes. Differential gene expression and co-expression network analyses were applied to identify up- and downregulated Gene Ontology (GO) terms and pathways for correlation to lipidomics data. RESULTS: Significantly affected GO terms and pathways were determined based on the comparisons of APOEε2/c datasets to those of APOEε3/3 and APOEε4/c brain samples. The analysis of lists of genes in highly correlated network modules and of those differentially expressed demonstrated significant enrichment in GO terms associated with genes involved in intracellular proteasomal and lysosomal degradation of proteins, protein aggregates and organelles, ER stress, and response to unfolded protein, as well as mitochondrial function, electron transport, and ATP synthesis. Small nucleolar RNA coding units important for posttranscriptional modification of mRNA and therefore translation and protein synthesis were upregulated in APOEε2/c brain samples compared to both APOEε3/3 and APOEε4/c. The analysis of lipidomics datasets revealed significant changes in ten major lipid classes (exclusively a decrease in APOEε4/c samples), most notably non-bilayer-forming phosphatidylethanolamine and phosphatidic acid, as well as mitochondrial membrane-forming lipids. CONCLUSIONS: The results of this study, despite the advanced stage of AD, point to the significant differences in postmortem brain transcriptomes and lipidomes, suggesting APOE allele associated differences in pathogenic mechanisms. Correlations within and between lipidomes and transcriptomes indicate coordinated effects of changes in the proteasomal system and autophagy-canonical and selective, facilitating intracellular degradation, protein entry into ER, response to ER stress, nucleolar modifications of mRNA, and likely myelination in APOEε2/c brains. Additional research and a better knowledge of the molecular mechanisms of proteostasis in the early stages of AD are required to develop more effective diagnostic approaches and eventually efficient therapeutic strategies.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Brain/metabolism , Transcriptome , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apolipoprotein E2/metabolism , Brain/pathology , Female , Humans , Lipidomics , Male
SELECTION OF CITATIONS
SEARCH DETAIL