ABSTRACT
PURPOSE: To compare diagnostic accuracy in localization and detection of extraprostatic extension (EPE), seminal vesicle invasion (SVI), lymph node involvement (LNI) between PSMA PET MRI and multiparametric MRI (mpMRI) in carcinoma prostate. METHODS: We did a prospective study of consecutive men with biopsy-proven prostate cancer who underwent radical prostatectomy between July'2020 and Dec'2021 at our institution. Patients underwent PSMA PET MRI imaging. MpMRI findings were inferred separately by another radiologist who was blinded to the PSMA PET findings. PIRADS > 2 and any standardized uptake value (SUV) were considered positive. Findings were mapped to a 30-region anatomical grid and compared with pathology. The uro-pathologist also marked the presence of the tumor onto the same anatomical grid. The presence of EPE, SVI, and LVI was noted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The significance in difference: McNemar test. SUVmax and Gleason score: Kruskal-Wallis test. RESULTS: Seventy-five men (mean age 65) with an average PSA of 21.5 ng/ml were included. The sensitivity of PSMA PET MRI for localization was higher [63.6 vs 41.9] (p < 0.001) while specificity was similar [81.5 vs 83.2] (p 0.103). The former had a higher sensitivity to detect SVI [85.7 vs 57.10] (p = 0.03). No difference in the detection of EPE or LNI was noted. SUVmax > 7 was associated with high-risk disease (Gleason score >/= 7). LIMITATIONS: non-randomized nature, higher risk population. CONCLUSION: Ga-PSMA PET MRI improved the localization of prostate cancer and better detection of SVI. Further studies are required. It can act as a single-stop investigation for the primary staging of prostate cancer.
Subject(s)
Gallium Isotopes , Gallium Radioisotopes , Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Aged , Humans , Male , Magnetic Resonance Imaging/methods , Multiparametric Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgeryABSTRACT
This study develops environmentally benign capping technique to synthesize nanoparticles of Curcuma longa-coated titanium dioxide (CR-TiO2) from titanium isopropoxide by utilizing the extract of Rosa rubiginosa flowers as reducing and chelating agent. The biogenically synthesized nanoparticles revealed excellent anti-bacterial, electrochemical, and photocatalytic properties due to the presence of porous TiO2 nanostructures. The sharp peaks by XRD pattern showed the crystallinity and phase purity of TiO2 nanoparticles. BET analysis proved mesoporous nature of the materials with specific surface area of 134 m2 g -1. The vibrational spectra suggest hydroxyl groups from flavonoids of Curcuma longa acting as functionalizing agent for TiO2 nanoporous structures with visible luminescence, which is proven in fluorescence spectra and is applicable for photocatalytic studies. The anti-bacterial studies showed good inference on TiO2 nanoparticles against Pseudomonas auruginosa and proved it to be an excellent antipseudomonal agent with the oxidative potential. The maximum degradation of phenol red dye in the presence of TiO2 under visible light conditions was observed. The supercapacitor fabricated using the biogenic TiO2 three-electrode system exhibited a specific capacitance of 128 Fg-1 (10 mV s-1), suggesting it as an excellent electrode material. The LSV curve at 50 mV s-1 scan rate showed that oxygen reduction potential (ORR) of CR-TiO2 electrodes was 121 mV. The present study is a new application of nanoparticles in sustainability consideration of the environment as well as a solution to the power crisis with fewer limitations. The well-distinguished antidiabetic and BSA denaturation potential suggests that these porous TiO2 nanostructures can be useful for drug delivery as glucose inhibitors and oral anti-inflammatory drugs with the restriction of adverse side effects.
Subject(s)
Anti-Bacterial Agents , Nanostructures , Titanium , Titanium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Nanostructures/chemistry , Catalysis , PorosityABSTRACT
Textile wastewater threatens people health by alluring diseases and revealing public existing close to the waste to the dangerous products within. Because waste causes a risk to the environment and people, waste management making is the main challenge of the municipal world. Environmental process such as toxic dye degradation can be stepped up through photochemical process such as visible light induced catalytic degradation. Here, the successful synthesis of co-doping of Al and F into TiO2 nanoparticles (Al-F∕TiO2 NPs) by solid state reaction method comprising different proportions of co-dopants is evaluated for the applications of degrading organic synthetic dyes and textile dyeing waste water. Influence of co-dopants was studied in their optical, structural, compositional, morphological and vibrational properties. The average crystallite size of Al-F∕TiO2 NPs was found as 15 nm.FTIR and UV-vis spectrum confirmed F and Al atoms were incorporated into the TiO2 lattice.The absorption edges slightly moved to shorter wavelength by increasing level of dopants and this specifies the control of optical absorption of TiO2 by the incorporation of F and Al3+ ions.The EDS spectrum indicates the purity of the samples. The highest zone of inhibition for the prepared nanoparticles over Staphylococcus aureus reached to 22 mm. The rate constant (kapp) value of MB, MO and textile waste water is 0.0138/min, 0.0174/min and 0.0139/min for the prepared nanoparticles respectively. The study of photocatalytic degradation of visible light assisted MB, MO and real textile waste water by Al-F∕TiO2 NPs revealed that the prepared nanoparticles act as ideal catalyst by tuning the concentration of co-dopants in TiO2.
Subject(s)
Nanoparticles , Wastewater , Catalysis , Coloring Agents , Humans , Nanoparticles/chemistry , Textiles , Titanium/chemistry , Wastewater/chemistryABSTRACT
Environmental route such as degradation of toxic dyes can be improved through photochemical activity such as light driven photocatalytic degradation. Herein, fluorine and tin simultaneously doped TiO2 nanoparticles were synthesized and characterized. The formation of anatase phase in synthesized samples and the reduction in the crystallite size of doped TiO2 was confirmed from XRD results. The existence of O-Ti-O stretching vibration in pure and co-doped TiO2 confirmed from FTIR results. Optical studies reveal that the band gap of co-doped TiO2 is increased and hence it was concluded that the particle size of co-doped TiO2 is reduced compared with as-synthesized TiO2. The morphologies of TiO2 changed significantly with doping of fluorine and tin. It reveals majority of the particles are hexagons, pentagons and ellipse shaped and some of them are spheres with a mean particle size of 31.17 nm. PL studies showed the reduction in intensity for Sn-F/TiO2 accredited to the lesser recombination rate of electron-hole pair under UV light irradiation. Thus tin and fluorine doped TiO2 could be considered as a good candidate for photocatalytic activity. The photocatalytic activity of TiO2 and Sn-F/TiO2 nanoparticles was analyzed separately through the degradation of methylene blue (MB) under visible and UV light irradiation. The use of Sn and F ions in the synthesis of TiO2 are revealed not only create small sized nanoparticles but these water soluble nanoparticles have very good antibacterial and antifungal action by inhibiting the growth of bacteria and fungus.
Subject(s)
Nanoparticles , Thiazines , Catalysis , Light , Nanoparticles/chemistry , Photochemistry , Titanium/chemistry , Ultraviolet RaysABSTRACT
In this paper, Magnesium Zinc Ferrite (MZF) nanoparticles (Mg0.8-xZnxFe2O4, where x = 0.2, 0.4 and 0.6) are successfully fabricated by combustion process. The prepared nanoparticles are characterized through XRD, FTIR, UV, SEM, EDS and TEM. It has been confirmed that the samples produced cubic spinel structure with crystal size in the range of 13-15 nm. From the ultraviolet spectrum, the optical band gap is calculated which ranges from 5.6 to 4.6 eV. TEM micrographs confirm the nanocrystalline nature of combustion derived ferrite nanoparticles with average particle diameter of 7-28 nm. Antibacterial studies confirmed that the nanoparticles are toxic to Pseudomonas aeruginosa consists of greatest zone of inhibition of 25 mm. The antibacterial and photocatalytic studies exhibited improved activity which is strongly influenced by the zinc doping. Photocatalytic degradation study reveal that the prepared nanoparticles function as perfect catalyst for degradation of Methylene Blue (MB) dye and Textile Dyeing Waste Water (TDWW) under UV light, thus revealing their potential usage on organic pollutants.
Subject(s)
Ultraviolet Rays , Wastewater , Anti-Bacterial Agents , Catalysis , Textiles , ZincABSTRACT
A novel photocatalyst based cobalt doped zinc ferrites nanoparticles (Co-ZnFe2O4 NPs) was prepared to actively concentrate degradation of organic dyes in water. The aim this study is to investigate the effect of substitution of Co2+ for Zn2+ in zinc ferrites nanoparticles and is characterized with UV-visible spectroscopy, XRD, TEM, SEM, Photoluminescence and Vibrating sample magnetometer technique. When the calcinations temperature increases from 150 °C to 450 °C the amorphous ferrites begins to vanish and the characteristic reflections of cubic spinal Co-ZnFe2O4 phase are only observed at 450 °C. The band gap energy (Eg) of sample calcined at 250 °C is calculated at 5.2 eV and that of 450 °C is 4.5 eV. The observed value of band gap energy decreased with increasing calcinations temperature in the samples. The increase in PL peak intensity is due to collective emissions and light-scattering. The doping material, cobalt substitution at spinel zinc ferrites surface, and hence gradually decrease the amorphous effect, increase the saturation magnetization and decrease the coercivity while increasing the temperature. The compounds calcined at 250 °C and 450 °C were investigated for their in vitro antimicrobial activity against Staphylococcus aureus. A sample with 450 °C calcination temperature leads to higher efficiencies in the inhibition of growth of bacteria and degradation of organic dyes. Hence, this study provides a novel photocatalyst of Co-ZnFe2O4 NPs in the tile to degrade and analyze the environmentally ignored organic compounds.
Subject(s)
Cobalt , Nanoparticles , Anti-Bacterial Agents/chemistry , Coloring Agents , Ferric Compounds , Microwaves , Nanoparticles/chemistry , Zinc/pharmacologyABSTRACT
Selective and sensitive optical sensor based on surface plasmon resonance for detection of various heavy metals in water using polyvinylpyrolidone modified silver nanoparticles was explained in this present study. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). UV-visible spectra show the surface plasmon resonance (SPR) peak at 409 nm corresponding to silver nanoparticles. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 10 nm for prepared silver nanoparticles. FTIR analysis provides the presence of various functional groups responsible for the reduction and stability of the prepared silver nanoparticles. SERS gives the molecular orientation of the adsorbed pyridine molecules via its nitrogen lone pair of electrons on the surface of silver. Prepared polyvinylpyrolidone modified silver nanoparticles (AgNPs) are demonstrated to detect the concentration of heavy metal contaminant Fe3+ ions in water based on linear change in surface plasmon resonance absorption strength. In addition, AgNPs showed promising activity towards E.coli. These observed optical properties suggest the possible utilization of prepared nanoparticles in the application of water purification.
Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , WaterABSTRACT
Piper longum extract as a reducing agent in green synthesis method is used to synthesize ZnO nanoparticles (ZnO-NPs). The impact of the reductant on the structural, optical and surface morphological properties of ZnO-NPs can be analyzed. Piper longum extract has delicately tuned the band gap of ZnO-NPs. Increase in energy band gap indicates an increase in the number of capping molecules in the prepared ZnO nanoparticles. The carbohydrates and proteins not only play a fundamental role in ZnO capping, which is important for its stability, determination and biocompatibility. Thus obtained nanosized ZnO particles are confirmed by the surface morphological studies. Because of various surface interface properties might have different physical-chemical, desorption-adsorption abilities in the direction towards microbes, create different antibacterial performances. S.aureus has maximum inhibition zone of 23 mm and Escherichia coli has minimum inhibition zone of 7 mm. To assess the photocatalytic activity of the prepared ZnO-NPs under UV light irradiation, methyl orange, malachite green and methylene blue dyes were utilized as model contaminants. The degradation efficiency of MG, MB and MO dyes solution is found that 96%, 69% and 48% of degradation efficiency respectively under ultraviolet light irradiation. The properties of synthetic nanopowders suggest that they have important potential for a variety of biochemical and environmental applications.
Subject(s)
Metal Nanoparticles , Nanoparticles , Piper , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Catalysis , Metal Nanoparticles/chemistry , Staphylococcus aureus , Zinc Oxide/chemistryABSTRACT
During the decomposition of trashes, leachate is created and leaching is gradually pollutes the surface and groundwater. Thus, the most severe ecological impact is the risk of ground water pollution because of collection of leachate from unlined insecure landfills. Due to the low biodegradable organic strength, irregular productivity and composition, the environmentally neglected landfill leachate treatment is challenging. This work was conducted on a synthetically effective bimetallic surface enhanced Raman spectroscopic (SERS) nanosensor by gold/silver-bimetallic nanoparticles (Au/Ag-NPs), and used for the specific detection of municipal solid waste (MSW) landfill leachate in groundwater. The optical study of Au/Ag-NPs led to reflections from Ag cores and small Au shells. The structural studies represent the FCC structure of Au/Ag-NPs. The core-shell nanocrevice NPs with particle size of 23 nm played an important role with plasmonic behaviour enhances the electromagnetic excitation to achieve SERS detection and plasmonic photocatalysis. Thus, obtained results clearly show that Au was successfully added to Ag-NPs, and its existence can also be confirmed by energy dispersive spectroscopy (EDAX). The prepared SERS based sensors have the potential to detect aromatic hydrocarbon, pesticides and heavy metals from environmentally ignored MSW landfill leachate. In general, the application of this new synergetic strategy of the photocatalytic degradation of leachate was irradiated by visible wavelength with the rate constant of 0.0036/min, 0.0047/min and 0.005/min by Ag-NPs, Au-NPs and Au/Ag-NPs respectively. Overall, this is the only study achieved efficiently with photocatalytic degradation and SERS detection of environmentally ignored real sample (leachate) to make pollutant free homeland aquifers.
Subject(s)
Groundwater , Metals, Heavy , Nanoparticles , Pesticides , Hazardous SubstancesABSTRACT
The coloured dyes released from the textile industrial effluents into water resources cause non-aesthetic pollution and aquatic life toxicity. Thus textile waste water treatment has been studied globally for many years. Photocatalytic properties of lead tungstate (PbWO4) nanoparticles (NPs) were analyzed for thiazine dyes and textile waste water under ultraviolet light conditions. XRD result showed the tetragonal scheelite structure of PbWO4 NPs. The crystallinity of the sample was confirmed from the SAED and XRD pattern. The existence of stretch vibration of Pb-O and O-W-O confirmed from FTIR results. EDAX displays optical absorption signals of Pb, W and O, and confirm the formation of PbWO4. Optical studies reveal that the band gap of the obtained nanoparticles increases with respect to their bulk counterparts that may be attributed to reduction in particle size. TEM images of PbWO4 powder consists of hexagonal particles and relatively uniform and smooth surface rod shaped prism-like structures. The photocatalytic activity of the prepared nanoparticles was analyzed through the degradation of textile waste water under UV light irradiation. The photocatalytic reaction rate constant was found to be 0.014/min. The small sized PbWO4 particles can adsorb more OH groups and oxidatively degrade the pollutants in the textile waste water.
Subject(s)
Nanoparticles , Thiazines , Water Pollutants, Chemical , Catalysis , Coloring Agents , Textiles , Wastewater , Water Pollutants, Chemical/analysisABSTRACT
Gold nanoparticles (AuNPs) and AuNPs functionalized by ß-cyclodextrin (ß-CD/AuNPs) were prepared successfully through chemical reduction method. The structural, morphological, optical, compositional and vibrational studies for the AuNPs and ß-CD/AuNPs were carried out. Functionalization of AuNPs by ß-CD was confirmed with FT-IR results. The UV-visible absorption spectra exhibit a red-shift with decreasing average particle size. This sustains the enhancement in surface area (SA) to volume (V) ratio that is one of the peculiar characteristics of nanoparticles. TEM results show that ß-CD/AuNPs formed were monodispersed and self assembled. Also it shows a decrease in average particle size and improved distribution. The use of ß-CD in the synthesis of AuNPs are revealed not only create uniform small sized nanoparticles but these water soluble nanoparticles have very good antibacterial action by inhibiting the growth of bacteria commonly found in water and sensing activity for sensing the concentration of toxic metals in water. The sensitivity of the system towards copper (Cu) concentration was found as 1.788/mM for ß-CD/AuNPs and 1.333/mM for AuNPs. The photocatalytic action of the obtained nanoparticles increases with decreasing average particle size. The kapp value of this photocatalytic degradation of textile dyeing waste water in presence of AuNPs was 0.002/min and ß-CD/AuNPs was 0.005/min. This is a non-toxic and eco-friendly approach.
Subject(s)
Metal Nanoparticles , beta-Cyclodextrins , Gold , Spectroscopy, Fourier Transform Infrared , Textiles , WaterABSTRACT
Nowadays world deals with a lot of environmental troubles out of which water pollution is very dangerous. Water gets contaminated by heavy metal ions is a universal problem which needs suitable consideration to keep up the quality of the water. It will be advantageous that an easy device can be detecting the concentration of heavy metal ions in water. Here, a contaminant, cadmium from industrial affluent into water is considered and focused. Gold nanoparticles (AuNPs) have been synthesized by Solanum trilobatum leaf extract and its applications of antifungal and sensing activity was reported here. The influences of different concentration of these reducing agent on the synthesis of AuNPs (G5 and G10) have been evaluated. The structural, optical, vibrational, morphological and compositional properties of the AuNPs were studied through XRD, UV-vis spectra, FTIR, HRTEM and EDAX analysis. The optical studies showed surface plasmon absorbance peak at 526 nm. It shows that the absorbance of the peak becomes narrow with a higher concentration of leaf extract. XRD results showed the average size of the AuNPs was 8 nm. It also confirmed the high crystallinity of nanoparticles. FTIR exposes that amine and carboxyl groups may be involved in the stabilization and reduction mechanism. TEM pictures of both G10 and G5 demonstrate merely spherical nanoparticles. This morphology control is taken place owing to the adsorbed amine and carboxyl groups onto the gold nanoparticles cap the particles and improve the stability. The presence of gold elements in the sample was identified with the help of EDAX. The sensitivity of the system towards various Cd2+ concentrations was measured as 0.058/mM for G5 and 0.095/mM for G10. The prepared nanoparticles produced highest zone of inhibition (ZOI) of 17.5 mm and 19 mm against human being pathogenic fungi Aspergillus Flavus and Candida albicans respectively. Here, small sized spherical nanoparticles showed good antifungal activity.
Subject(s)
Metal Nanoparticles , Solanum , Cadmium , Gold , Green Chemistry Technology , Humans , Photochemistry , Plant Extracts , WaterABSTRACT
OBJECTIVE: The purpose of this study was to evaluate microvessel density (MVD) as assessed by C-type lectin 14A (CLEC14A), which is a new marker for endothelial cells, and compare its expression to CD31 and CD105 in epithelial ovarian cancer (EOC). METHODS: MVD was evaluated in tumors (n = 50) from patients with EOC who underwent primary surgery and in patients with EOC who received preoperative chemotherapy (n = 49) using immunohistochemistry with antibodies to CLEC14A, CD31 and CD105. The median duration of follow-up was 24.5 months (range 1-101 months). The effect of prognostic factors on event-free survival (EFS) and overall survival (OS) was assessed using the Cox regression model. RESULTS: The amount of residual disease was found to be an independent prognostic factor in multivariate analysis with respect to EFS (P = 0.009) and OS (P < 0.001). The mean MVD of CLEC14A (MVD = 6), in tumors from patients who underwent primary surgery, was significantly lower than that of CD31 (MVD = 25, P < 0.0001) and CD105 (MVD = 11, P = 0.018). However, there was no significant correlation between MVD as detected by these markers and clinical outcome. There was no expression of CLEC14A in tumors from patients who received preoperative chemotherapy and the MVD of CD31 and CD105 was significantly reduced (P = 0.001 and 0.006, respectively) in this set of patients. CONCLUSION: This study demonstrates MVD as detected by CLEC14A in EOC. Treatment with chemotherapy reduces tumor blood vessels significantly. We suggest that CLEC14A may be a more specific endothelial marker to assess tumor angiogenesis.
Subject(s)
Biomarkers, Tumor/analysis , Cell Adhesion Molecules/analysis , Lectins, C-Type/analysis , Microvessels/pathology , Neoplasms, Glandular and Epithelial/blood supply , Neoplasms, Glandular and Epithelial/chemistry , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/chemistry , Adult , Aged , Aged, 80 and over , Carcinoma, Ovarian Epithelial , Chemotherapy, Adjuvant , Disease-Free Survival , Endoglin/analysis , Female , Follow-Up Studies , Humans , Immunohistochemistry , Middle Aged , Neoadjuvant Therapy , Neoplasm, Residual , Neoplasms, Glandular and Epithelial/therapy , Neovascularization, Pathologic , Ovarian Neoplasms/therapy , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Survival Rate , Young AdultABSTRACT
The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR(+ve) A431 cells in a co-culture with EGFR(-ve) NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.
Subject(s)
ErbB Receptors/analysis , Fluorescent Antibody Technique/methods , Glioma/metabolism , Mouth Neoplasms/metabolism , Nanoparticles/chemistry , Skin Neoplasms/metabolism , Cell Line, Tumor , Humans , Manganese/chemistry , Nanoparticles/ultrastructure , Sulfides/chemistry , Zinc Compounds/chemistryABSTRACT
Radical prostatectomy (RP) constitutes the primary treatment option for patients with clinically localized, biopsy-proven prostate cancer that requires local treatment with curative intent. Accurate reporting of radical prostatectomy specimens is required to guide further risk stratification and management of patients. Hence, for the handling and reporting of RP specimens, a standardized protocol should be followed. Many general pathologists may not be well-versed with the guidelines for the handling of radical prostatectomy specimens. This article discusses a detailed approach to grossing techniques, including specimen description, fixation requirements, gross cut-up, and reporting of the grade and stage of RP specimens. This will enable the pathologist to aid in multidisciplinary management.
Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/surgery , Prostatectomy/methods , Prostatic Neoplasms/surgery , Biopsy , Palliative CareSubject(s)
Adrenal Gland Neoplasms/complications , Pheochromocytoma/complications , Venous Thrombosis/etiology , von Hippel-Lindau Disease/complications , Adolescent , Adrenal Gland Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Angiography , Male , Parietal Lobe/diagnostic imaging , Pheochromocytoma/diagnostic imaging , Venous Thrombosis/diagnostic imaging , von Hippel-Lindau Disease/diagnostic imagingABSTRACT
In the current study, cobalt magnesium ferrites (Mg0.8-xCoxFe2O4 for x values 0.2, 0.4 and 0.6) nanoparticles are prepared by combustion method. The morphology, optical, structural, photocatalytic, compositional and vibrational properties of Mg0.8-xCoxFe2O4 by the influence of cobalt doping is investigated. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) confirms the formation of spinel cubic phase of the prepared ferrites samples. The optical band gap energy shows a strong effect on crystallite size and increases from 4.2 to 4.4 eV as the concentration of cobalt gets increased. TEM images of Mg0.8-xCoxFe2O4 clearly reveal spherical nanoparticles with decreasing particle size which ranges from 16 to 10 nm. EDAX spectrum confirms the existence of Fe, Co, Mg and oxygen. The photocatalytic studies of Mg0.8-xCoxFe2O4 are performed for anionic and cationic dyes. The rate constant values of methylene blue are found as 0.017/min, 0.019/min and 0.022/min for Mg0.8-xCoxFe2O4 for x values 0.2, 0.4 and 0.6 respectively. The degradation efficacy of the prepared samples to degrade methylene blue is high (95%) and it indicates that they may be efficient in degrading environmental pollutants and may prove out to be competent photo-catalyst.
Subject(s)
Thiazines , Ultraviolet Rays , Cations , Cobalt/chemistry , Coloring Agents , Ferric Compounds , Magnesium Compounds , Methylene Blue , PhotochemistryABSTRACT
Immunoglobulin G4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory condition that can mimic several diseases and can present as a malignant tumor. We present a case of a 53-year-old woman who presented with a right upper ureteric mass. On pathologic evaluation, a diagnosis of IgG4-RD was made. In the absence of preoperative biopsy and other clinical manifestations, preoperative clinical diagnosis remains challenging and high index of suspicion and accurate pathological evaluation may help in avoiding misdiagnosis.
Subject(s)
Immunoglobulin G4-Related Disease/diagnosis , Kidney/pathology , Ureteral Diseases/diagnosis , Diagnosis, Differential , Female , Humans , Middle Aged , PrognosisABSTRACT
The disintegration of natural water sources signals out the scarcity of adam's ale and will be hurdle for the human physical state. So it is necessary to decrease waste loads and hence pressure on the ecology for the sustainability of fishery and dye industry. Herein, TiO2 nanoparticles doped with Sn and F are synthesized and the influence of simultaneous doping on the optical, surface morphological, structural, photocatalytic and antibacterial activities are investigated. Doping of TiO2 with Sn and F suppress the growth of both anatase and rutile phase because of the dissimilar boundaries. All the prepared doped and undoped samples are found to possess tetragonal structure. The influence of F and Sn in TiO2 lattice is recognized with the XRD and FT-IR spectra of the prepared particles The size of the obtained nanoparticles decreases as increasing concentration of F and Sn. TiO2 is showing the presence of spherical and ellipsoidal nanoparticles whereas doped samples showing nanobulk, pentagons and rods. The absorption edge of the doped samples are blue shifted with increasing concentration of dopants indicates the control of optical absorption property of TiO2. The visible light assisted photocatalytic degradation of fish processing waste water by doped and undoped samples are found to be established as 0.0076/min and 0.0071/min respectively. Visible light assisted degradation of commercially available dyes and fish processing waste water is assessed. Methyl blue showed enhanced photocatalytic activity under visible light irradiation compared to Methyl orange. It is observed that all the prepared particles show good antimicrobial activity against Staphylococcus aureus.
Subject(s)
Nanoparticles , Wastewater , Anti-Bacterial Agents/pharmacology , Catalysis , Coloring Agents , Humans , Light , Spectroscopy, Fourier Transform Infrared , TitaniumABSTRACT
Renal tumors comprise a wide spectrum of benign and malignant tumors. The important prognostic factors in renal cell carcinoma include pathological stage, tumor grade, morphological type, sarcomatoid/rhabdoid differentiation, and tumor necrosis. Therefore, the pathologist needs to be fully aware of how to gross nephrectomy specimens to be able to accurately provide the above prognostic information while reporting adult kidney tumors. With the advent of nephron-sparing surgeries, due diligence should be exercised to assess and sample the parenchymal surgical margin. This article discusses the approach to grossing nephrectomy specimens, elaborates the significance of every step, and also sheds light on the importance of clinical and radiological information in providing a holistic approach to the diagnosis and staging of adult renal tumors.