Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Proc Natl Acad Sci U S A ; 112(2): E176-85, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548172

ABSTRACT

Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.


Subject(s)
Anopheles/immunology , Anopheles/virology , Arboviruses/immunology , Arboviruses/pathogenicity , Alphavirus Infections/immunology , Alphavirus Infections/transmission , Animals , Anopheles/genetics , Arbovirus Infections/immunology , Arbovirus Infections/transmission , Arboviruses/genetics , Digestive System/immunology , Digestive System/microbiology , Digestive System/virology , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/virology , Janus Kinases/immunology , Microbiota , O'nyong-nyong Virus/genetics , O'nyong-nyong Virus/immunology , O'nyong-nyong Virus/pathogenicity , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , RNA Interference , RNA, Small Interfering/genetics , STAT Transcription Factors/immunology , Signal Transduction/immunology
3.
PLoS Pathog ; 11(12): e1005306, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26633695

ABSTRACT

Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity.


Subject(s)
Anopheles/genetics , Anopheles/immunology , Insect Vectors/genetics , Insect Vectors/immunology , Animals , Base Sequence , Evolution, Molecular , Genes, Insect/immunology , Genetic Variation , Insect Proteins/genetics , Insect Proteins/immunology , Malaria/transmission , Mice , Molecular Sequence Data , Polymerase Chain Reaction
4.
Mol Ecol ; 25(7): 1494-510, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26846876

ABSTRACT

The recent discovery of a previously unknown genetic subgroup of Anopheles gambiae sensu lato underscores our incomplete understanding of complexities of vector population demographics in Anopheles. This subgroup, named GOUNDRY, does not rest indoors as adults and is highly susceptible to Plasmodium infection in the laboratory. Initial description of GOUNDRY suggested it differed from other known Anopheles taxa in surprising and sometimes contradictory ways, raising a number of questions about its age, population size and relationship to known subgroups. To address these questions, we sequenced the complete genomes of 12 wild-caught GOUNDRY specimens and compared these genomes to a panel of Anopheles genomes. We show that GOUNDRY is most closely related to Anopheles coluzzii, and the timing of cladogenesis is not recent, substantially predating the advent of agriculture. We find a large region of the X chromosome that has swept to fixation in GOUNDRY within the last 100 years, which may be an inversion that serves as a partial barrier to contemporary gene flow. Interestingly, we show that GOUNDRY has a history of inbreeding that is significantly associated with susceptibility to Plasmodium infection in the laboratory. Our results illuminate the genomic evolution of one of probably several cryptic, ecologically specialized subgroups of Anopheles and provide a potent example of how vector population dynamics may complicate efforts to control or eradicate malaria.


Subject(s)
Anopheles/genetics , Evolution, Molecular , Genome, Insect , Plasmodium falciparum , Animals , Anopheles/parasitology , Chromosome Inversion , Gene Flow , Genetic Speciation , Genetics, Population , Inbreeding , Insect Vectors/genetics , Insect Vectors/parasitology , Polymorphism, Single Nucleotide , Population Dynamics , Sequence Analysis, DNA , X Chromosome/genetics
5.
Malar J ; 14: 391, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26445487

ABSTRACT

BACKGROUND: Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anopheles coluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. METHODS: Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. RESULTS: A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. CONCLUSIONS: Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para.


Subject(s)
Anopheles/genetics , Anopheles/parasitology , Genetic Loci , Haplotypes , Insecticide Resistance , Plasmodium falciparum/growth & development , Potassium Channels, Voltage-Gated/genetics , Animals , Anopheles/immunology , Burkina Faso , Female , Genetic Linkage , Plasmodium falciparum/immunology
6.
Blood ; 119(2): e1-8, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22106347

ABSTRACT

Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.


Subject(s)
Antigens, Protozoan/metabolism , Erythrocyte Membrane/pathology , Erythrocytes/pathology , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Antigens, Protozoan/genetics , Cells, Cultured , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology , Erythrocytes/metabolism , Erythrocytes/parasitology , Fluorescent Antibody Technique, Indirect , Humans , Plasmodium falciparum/isolation & purification , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
7.
Blood ; 119(24): e172-80, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22517905

ABSTRACT

Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the peripheral blood, available to uptake by the Anopheles vector. Mechanisms underlying GIE sequestration and release in circulation are virtually unknown. We show here that mature GIEs are more deformable than immature stages using ektacytometry and microsphiltration methods, and that a switch in cellular deformability in the transition from immature to mature gametocytes is accompanied by the deassociation of parasite-derived STEVOR proteins from the infected erythrocyte membrane. We hypothesize that mechanical retention contributes to sequestration of immature GIEs and that regained deformability of mature gametocytes is associated with their release in the bloodstream and ability to circulate. These processes are proposed to play a key role in P falciparum gametocyte development in the host and to represent novel and unconventional targets for interfering with parasite transmission.


Subject(s)
Erythrocyte Deformability/physiology , Erythrocytes/parasitology , Life Cycle Stages , Malaria, Falciparum/blood , Malaria, Falciparum/transmission , Plasmodium falciparum/growth & development , Plasmodium falciparum/physiology , Adult , Animals , Antigens, Protozoan/metabolism , Fluorescent Antibody Technique , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/ultrastructure , Protein Transport
8.
Exp Parasitol ; 133(1): 51-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23103717

ABSTRACT

Babesiosis is a tick-transmitted disease of mammalian hosts, caused by the intraerythrocytic protozoan parasites of the genus Babesia. Transmission of Babesia parasites from the vertebrate host to the tick is mediated by sexual stages, the gametocytes which are the only intraerythrocytic stages that survive and develop inside the vector. Very few data are available concerning these parasite stages and some markers are needed in order to refine our knowledge of Babesia life cycle inside the tick and to permit the monitoring of parasite transmission from vertebrate to vector. We previously identified some potential markers of the Babesia divergens gametocytes using an in silico post-genomic approach based on sequence identity between the available genomes of Plasmodium and Babesia spp. Here, one of the identified proteins, BdCCp2, was validated as a marker of sexual stages of B. divergens, in infected ticks challenged with antisera directed against recombinant BdCCp2 protein. The BdCCp2 protein was detected by Western blot in some infected ticks, as a discrete band of approximately 171 kDa, while no signal was detected in the laboratory-reared non-infected tick. BdCCp2 was also detected, by immunohistochemical analyses, in piriform or ovoid bodies, measuring 2.5-4.5 µm in diameter, in the gut of partially engorged ticks that were experimentally infected. This molecular marker can then be used in the future to characterize and analyze the biology of B. divergens gametocytes.


Subject(s)
Arachnid Vectors/parasitology , Arthropod Proteins/analysis , Babesia/physiology , Enzyme Precursors/analysis , Ixodes/parasitology , Serine Endopeptidases/analysis , Animals , Antibodies, Protozoan/immunology , Antibody Specificity/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Babesia/genetics , Babesia/isolation & purification , Babesiosis/parasitology , Babesiosis/transmission , Babesiosis/veterinary , Biomarkers/analysis , Blotting, Western/veterinary , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Electrophoresis, Polyacrylamide Gel/veterinary , Enzyme Precursors/genetics , Enzyme Precursors/immunology , Erythrocytes/parasitology , Female , Guinea Pigs , Immune Sera/immunology , Immunohistochemistry/veterinary , Rabbits , Recombinant Proteins/biosynthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology
9.
Mol Microbiol ; 81(5): 1343-57, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21752110

ABSTRACT

Transmission of Plasmodium species from a mammalian host to the mosquito vector requires the uptake, during an infected blood meal, of gametocytes, the precursor cells of the gametes. Relatively little is known about the molecular mechanisms involved in the developmental switch from asexual development to sexual differentiation or the maturation and survival of gametocytes. Here, we show that a gene coding for a novel putative transporter, NPT1, plays a crucial role in the development of Plasmodium berghei gametocytes. Parasites lacking NPT1 are severely compromised in the production of gametocytes and the rare gametocytes produced are unable to differentiate into fertile gametes. This is the earliest block in gametocytogenesis obtained by reverse genetics and the first to demonstrate the role of a protein with a putative transport function in sexual development. These results and the high degree of conservation of NPT1 in Plasmodium species suggest that this protein could be an attractive target for the development of novel drugs to block the spread of malaria.


Subject(s)
Gametogenesis/physiology , Plasmodium berghei/metabolism , Sex Differentiation/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Animals , Culicidae/parasitology , Erythrocytes/parasitology , Gametogenesis/genetics , Gene Expression , Host-Parasite Interactions , Malaria/metabolism , Malaria/pathology , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Rats , Rats, Wistar
10.
Sci Rep ; 12(1): 6315, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428783

ABSTRACT

Entomopathogenic fungi have been explored as a potential biopesticide to counteract the insecticide resistance issue in mosquitoes. However, little is known about the possibility that genetic resistance to fungal biopesticides could evolve in mosquito populations. Here, we detected an important genetic component underlying Anopheles coluzzii survival after exposure to the entomopathogenic fungus Metarhizium anisopliae. A familiality study detected variation for survival among wild mosquito isofemale pedigrees, and genetic mapping identified two loci that significantly influence mosquito survival after fungus exposure. One locus overlaps with a previously reported locus for Anopheles susceptibility to the human malaria parasite Plasmodium falciparum. Candidate gene studies revealed that two LRR proteins encoded by APL1C and LRIM1 genes in this newly mapped locus are required for protection of female A. coluzzii from M. anisopliae, as is the complement-like factor Tep1. These results indicate that natural Anopheles populations already segregate frequent genetic variation for differential mosquito survival after fungal challenge and suggest a similarity in Anopheles protective responses against fungus and Plasmodium. However, this immune similarity raises the possibility that fungus-resistant mosquitoes could also display enhanced resistance to Plasmodium, suggesting an advantage of selecting for fungus resistance in vector populations to promote naturally diminished malaria vector competence.


Subject(s)
Anopheles , Malaria , Metarhizium , Plasmodium , Animals , Anopheles/parasitology , Female , Humans , Metarhizium/genetics , Mosquito Vectors/genetics
11.
Antimicrob Agents Chemother ; 55(6): 2576-84, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21464256

ABSTRACT

Due to their rapid, potent action on young and mature intraerythrocytic stages, artemisinin derivatives are central to drug combination therapies for Plasmodium falciparum malaria. However, the evidence for emerging parasite resistance/tolerance to artemisinins in southeast Asia is of great concern. A better understanding of artemisinin-related drug activity and resistance mechanisms is urgently needed. A recent transcriptome study of parasites exposed to artesunate led us to identify a series of genes with modified levels of expression in the presence of the drug. The gene presenting the largest mRNA level increase, Pf10_0026 (PArt), encoding a hypothetical protein of unknown function, was chosen for further study. Immunodetection with PArt-specific sera showed that artesunate induced a dose-dependent increase of the protein level. Bioinformatic analysis showed that PArt belongs to a Plasmodium-specific gene family characterized by the presence of a tryptophan-rich domain with a novel hidden Markov model (HMM) profile. Gene disruption could not be achieved, suggesting an essential function. Transgenic parasites overexpressing PArt protein were generated and exhibited tolerance to a spike exposure to high doses of artesunate, with increased survival and reduced growth retardation compared to that of wild-type-treated controls. These data indicate the involvement of PArt in parasite defense mechanisms against artesunate. This is the first report of genetically manipulated parasites displaying a stable and reproducible decreased susceptibility to artesunate, providing new possibilities to investigate the parasite response to artemisinins.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/physiology , Animals , Animals, Genetically Modified , Artesunate , Drug Tolerance , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
12.
PLoS Pathog ; 5(9): e1000576, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19750215

ABSTRACT

Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share > or =50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized.


Subject(s)
Anopheles/immunology , Insect Proteins/immunology , Malaria/immunology , Plasmodium/pathogenicity , Trans-Activators/immunology , Analysis of Variance , Animals , Anopheles/genetics , Caenorhabditis elegans Proteins , Child , Child, Preschool , Female , Humans , Insect Proteins/genetics , Membrane Proteins , Models, Immunological , Signal Transduction/immunology , Statistics, Nonparametric
13.
Front Genet ; 12: 785934, 2021.
Article in English | MEDLINE | ID: mdl-35082832

ABSTRACT

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences. Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.

14.
BMC Genomics ; 11: 34, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20078850

ABSTRACT

BACKGROUND: Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. RESULTS: A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. CONCLUSION: This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.


Subject(s)
Gene Expression Profiling , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Transcription Factors/genetics , Chromatin/genetics , Cluster Analysis , Computational Biology/methods , Erythrocytes/parasitology , Gene Expression Regulation, Developmental , Genome, Protozoan , Plasmodium falciparum/growth & development , Proteome/metabolism
15.
PLoS Pathog ; 4(8): e1000121, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18688281

ABSTRACT

Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria.


Subject(s)
Hepatocytes/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/biosynthesis , Up-Regulation , Animals , Cells, Cultured , Gene Expression Profiling/methods , Hepatocytes/parasitology , Hot Temperature , Humans , Malaria, Falciparum/genetics , Oligonucleotide Array Sequence Analysis/methods , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/genetics
16.
Cell Microbiol ; 11(9): 1329-39, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19438514

ABSTRACT

Most Apicomplexa are obligatory intracellular parasites that multiply inside a so-called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium, the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 (liver-specific protein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1-deficient liver-stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.


Subject(s)
Liver/parasitology , Plasmodium berghei/physiology , Protozoan Proteins/physiology , Vacuoles/parasitology , Animals , Gene Deletion , Gene Expression Profiling , Gene Targeting , Molecular Sequence Data , Plasmodium berghei/genetics , Protozoan Proteins/genetics
18.
Front Microbiol ; 11: 306, 2020.
Article in English | MEDLINE | ID: mdl-32174902

ABSTRACT

The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.

19.
Parasit Vectors ; 13(1): 18, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931885

ABSTRACT

BACKGROUND: The recent reference genome assembly and annotation of the Asian malaria vector Anopheles stephensi detected only one gene encoding the leucine-rich repeat immune factor APL1, while in the Anopheles gambiae and sibling Anopheles coluzzii, APL1 factors are encoded by a family of three paralogs. The phylogeny and biological function of the unique APL1 gene in An. stephensi have not yet been specifically examined. METHODS: The APL1 locus was manually annotated to confirm the computationally predicted single APL1 gene in An. stephensi. APL1 evolution within Anopheles was explored by phylogenomic analysis. The single or paralogous APL1 genes were silenced in An. stephensi and An. coluzzii, respectively, followed by mosquito survival analysis, experimental infection with Plasmodium and expression analysis. RESULTS: APL1 is present as a single ancestral gene in most Anopheles including An. stephensi but has expanded to three paralogs in an African lineage that includes only the Anopheles gambiae species complex and Anopheles christyi. Silencing of the unique APL1 copy in An. stephensi results in significant mosquito mortality. Elevated mortality of APL1-depleted An. stephensi is rescued by antibiotic treatment, suggesting that pathology due to bacteria is the cause of mortality, and indicating that the unique APL1 gene is essential for host survival. Successful Plasmodium development in An. stephensi depends upon APL1 activity for protection from high host mortality due to bacteria. In contrast, silencing of all three APL1 paralogs in An. coluzzii does not result in elevated mortality, either with or without Plasmodium infection. Expression of the single An. stephensi APL1 gene is regulated by both the Imd and Toll immune pathways, while the two signaling pathways regulate different APL1 paralogs in the expanded APL1 locus. CONCLUSIONS: APL1 underwent loss and gain of functions concomitant with expansion from a single ancestral gene to three paralogs in one lineage of African Anopheles. We infer that activity of the unique APL1 gene promotes longevity in An. stephensi by conferring protection from or tolerance to an effect of bacterial pathology. The evolution of an expanded APL1 gene family could be a factor contributing to the exceptional levels of malaria transmission mediated by human-feeding members of the An. gambiae species complex in Africa.


Subject(s)
Anopheles/genetics , Chaperonin 60/genetics , Immunologic Factors/genetics , Peptide Fragments/genetics , Animals , Anopheles/immunology , Evolution, Molecular , Gene Dosage , Insect Proteins/genetics , Insect Vectors/genetics , Longevity/genetics , Malaria/immunology , Malaria/transmission , Phylogeny
20.
BMC Microbiol ; 9: 219, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19832989

ABSTRACT

BACKGROUND: Genetic evidence for diversifying selection identified the Merozoite Surface Protein1 block2 (PfMSP1 block2) as a putative target of protective immunity against Plasmodium falciparum. The locus displays three family types and one recombinant type, each with multiple allelic forms differing by single nucleotide polymorphism as well as sequence, copy number and arrangement variation of three amino acid repeats. The family-specific antibody responses observed in endemic settings support immune selection operating at the family level. However, the factors contributing to the large intra-family allelic diversity remain unclear. To address this question, population allelic polymorphism and sequence variant-specific antibody responses were studied in a single Senegalese rural community where malaria transmission is intense and perennial. RESULTS: Family distribution showed no significant temporal fluctuation over the 10 y period surveyed. Sequencing of 358 PCR fragments identified 126 distinct alleles, including numerous novel alleles in each family and multiple novel alleles of recombinant types. The parasite population consisted in a large number of low frequency alleles, alongside one high-frequency and three intermediate frequency alleles. Population diversity tests supported positive selection at the family level, but showed no significant departure from neutrality when considering intra-family allelic sequence diversity and all families combined. Seroprevalence, analysed using biotinylated peptides displaying numerous sequence variants, was moderate and increased with age. Reactivity profiles were individual-specific, mapped to the family-specific flanking regions and to repeat sequences shared by numerous allelic forms within a family type. Seroreactivity to K1-, Mad20- and R033 families correlated with the relative family genotype distribution within the village. Antibody specificity remained unchanged with cumulated exposure to an increasingly large number of alleles. CONCLUSION: The Pfmsp1 block2 locus presents a very large population sequence diversity. The lack of stable acquisition of novel antibody specificities despite exposure to novel allelic forms is reminiscent of clonal imprinting. The locus appears under antibody-mediated diversifying selection in a variable environment that maintains a balance between the various family types without selecting for sequence variant allelic forms. There is no evidence of positive selection for intra-family sequence diversity, consistent with the observed characteristics of the antibody response.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/epidemiology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Selection, Genetic , Adolescent , Adult , Alleles , Animals , Child , Child, Preschool , DNA, Protozoan/genetics , Follow-Up Studies , Gene Frequency , Genetics, Population , Genotype , Humans , Infant , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Polymorphism, Genetic , Seasons , Senegal/epidemiology , Sequence Analysis, DNA , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL